NTP TECHNICAL REPORT #### **ON THE** # TOXICOLOGY AND CARCINOGENESIS ## STUDIES OF DIVINYLBENZENE-HP (CAS NO. 1321-74-0) ## IN F344/N RATS AND B6C3F₁ MICE (INHALATION STUDIES) Scheduled Peer Review Date: September 27-28, 2005 #### **NOTICE** This DRAFT Technical Report is distributed solely for the purpose of predissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the NTP. It does not represent and should not be construed to represent NTP determination or policy. #### **NTP TR 534** NIH Publication No. 05-4470 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health #### **FOREWORD** The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals. The prechronic and chronic studies were conducted in compliance with Food and Drug Administration (FDA) Good Laboratory Practice Regulations, and all aspects of the chronic studies were subjected to retrospective quality assurance audits before being presented for public review. These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for NTP toxicology and carcinogenesis studies are chosen primarily on the bases of human exposure, level of production, and chemical structure. The interpretive conclusions presented in this Technical Report are based only on the results of these NTP studies. Extrapolation of these results to other species and quantitative risk analyses for humans require wider analyses beyond the purview of these studies. Selection *per se* is not an indicator of a chemical's carcinogenic potential. Details about ongoing and completed NTP studies, abstracts of all NTP Technical Reports, and full versions of the the completed reports are available at the NTP's World Wide Web site: http://ntp.niehs.nih.gov. In addition, printed copies of these reports are available from the NTP as supplies last (919-541-1371). #### NTP TECHNICAL REPORT #### **ON THE** ## TOXICOLOGY AND CARCINOGENESIS ## STUDIES OF DIVINYLBENZENE-HP (CAS NO. 1321-74-0) ## IN F344/N RATS AND B6C3F₁ MICE (INHALATION STUDIES) Scheduled Peer Review Date: September 27-28, 2005 #### **NOTICE** This DRAFT Technical Report is distributed solely for the purpose of predissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the NTP. It does not represent and should not be construed to represent NTP determination or policy. #### **NTP TR 534** NIH Publication No. 05-4470 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health ## **CONTRIBUTORS** #### **National Toxicology Program** Evaluated and interpreted results and reported findings D.L. Morgan, Ph.D., Study Scientist G. Pearse, B.V.M.&S., Study Pathologist D.W. Bristol, Ph.D. J.R. Bucher, Ph.D. R.S. Chhabra, Ph.D. J.R. Hailey, D.V.M. R.A. Herbert, D.V.M., Ph.D. G.E. Kissling, Ph.D. D.E. Malarkey, D.V.M., Ph.D. R.R. Maronpot, D.V.M. S.D. Peddada, Ph.D. J.H. Roycroft, Ph.D. C.S. Smith, Ph.D. G.S. Travlos, D.V.M. K.L. Witt, M.S. #### **Battelle Northwest Operations** Conducted studies and evaluated pathology findings J.A. Dill, Ph.D., Principal Investigator (2-year studies) S.L. Grumbein, D.V.M., Ph.D. R.A. Renne, D.V.M. B.K. Hayden #### **Experimental Pathology Laboratories, Inc.** Provided pathology review M.H. Hamlin, II, D.V.M., Principal Investigator P. Howroyd, M.A., VetMB J.C. Peckham, D.V.M., M.S., Ph.D. #### **Dynamac Corporation** Prepared quality assurance audits S. Brecher, Ph.D., Principal Investigator #### NTP Pathology Working Group Evaluated slides and prepared pathology report on rats (July 17, 2003) W.G. Lieuallen, D.V.M., Ph.D., Chairperson Pathology Associates, A Charles River Company M.T. Butt, D.V.M. Pathology Associates, A Charles River Company J.T. Boyce, D.V.M., Ph.D., Observer Pathology Associates, A Charles River Company S. Harbo, D.V.M., Observer Battelle Northwest Operations R.A. Herbert, D.V.M., Ph.D. National Toxicology Program P. Howroyd, M.A., VetMB Experimental Pathology Laboratories, Inc. D.E. Malarkey, D.V.M., Ph.D. National Toxicology Program G. Pearse, B.V.M.&S. National Toxicology Program J.C. Peckham, D.V.M., M.S., Ph.D. Experimental Pathology Laboratories, Inc. R.C. Sills, D.V.M., Ph.D. National Toxicology Program Evaluated slides and prepared pathology report on mice (March 6, 2003) W.G. Lieuallen, D.V.M, Ph.D., Chairperson Pathology Associates, A Charles River Company M.T. Butt, D.V.M. Pathology Associates, A Charles River Company D. Dixon, D.V.M., Ph.D. National Toxicology Program R.A. Herbert, D.V.M., Ph.D. National Toxicology Program G. Pearse, B.V.M.&S. National Toxicology Program J.C. Peckham, D.V.M., M.S., Ph.D. Experimental Pathology Laboratories, Inc. ### Constella Group, Inc. Provided statistical analyses P.W. Crockett, Principal Investigator L.J. Betz, M.S. M.R Easterling, Ph.D. K.P. McGowan, M.B.A. J. Matthews, M.S. ### **Biotechnical Services, Inc.** Prepared Technical Report S.R. Gunnels, M.A., Principal Investigator N.N. Buchanan, B.S. L.M. Harper, B.S. J.I. Powers, M.A.P. D.C. Serbus, Ph.D. ## **CONTENTS** | ABSTRACT . | | 5 | |------------|--|-----| | EXPLANATIO | ON OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY | 12 | | TECHNICAL | REPORTS REVIEW SUBCOMMITTEE | 13 | | SUMMARY O | F TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS | 14 | | INTRODUCTI | ION | 15 | | MATERIALS | AND METHODS | 23 | | RESULTS | | 43 | | DISCUSSION | AND CONCLUSIONS | 85 | | REFERENCES | S | 93 | | APPENDIX A | Summary of Lesions in Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | A-1 | | APPENDIX B | Summary of Lesions in Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | B-1 | | Appendix C | Summary of Lesions in Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | C-1 | | Appendix D | Summary of Lesions in Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | D-1 | | APPENDIX E | Genetic Toxicology | E-1 | | APPENDIX F | Clinical Pathology Results | F-1 | | Appendix G | Organ Weights and Organ-Weight-to-Body-Weight Ratios | G-1 | | APPENDIX H | Reproductive Tissue Evaluations and Estrous Cycle Characterization | H-1 | | APPENDIX I | Chemical Characterization and Generation of Chamber Concentrations | I-1 | | Appendix J | Ingredients, Nutrient Composition, and Contaminant Levels in NTP-2000 Rat and Mouse Ration | J-1 | | Appendix K | Sentinel Animal Program | K-1 | | Appendix L | Physiologically Based Pharmacokinetic Model | L-1 | ## **ABSTRACT** $$H_2C=HC$$ #### **DIVINYLBENZENE-HP** CAS No. 1321-74-0 Chemical Formula: C₁₀H₁₀ Molecular Weight: 130.189 **Synonyms:** Benzene, diethenyl-(9CI); diethenylbenzene; divinyl benzene; divinylbenzene-HP (high purity); divinylbenzene (*m*-and *p*-mixture); divinylbenzene (*m*-, *p*-mixture); divinyl benzene, mixed isomers; DVB; DVB- *m*- (or *p*-) divinylbenzene; vinylstyrene Divinylbenzene-HP is used for producing vinyl polymers. Divinylbenzene-HP was nominated for study by the National Cancer Institute because of the potential for worker exposure and the structural similarity of divinylbenzene to styrene, a potential human carcinogen. Male and female F344/N rats and B6C3F₁ mice were exposed to divinylbenzene-HP (80%) by inhalation for 2 weeks, 3 months, or 2 years. Genetic toxicology studies were conducted in *Salmonella typhimurium* and mouse peripheral blood erythrocytes. #### 2-WEEK STUDY IN RATS Groups of five male and five female rats were exposed by whole body inhalation to divinylbenzene-HP at target concentrations of 0, 25, 50, 100, 200, or 400 ppm 6 hours plus T_{90} (12 minutes) per day, 5 days per week for 16 days. All rats survived to the end of the study. Statistically significant decreases in group mean body weights occurred in both male and female rats in the 400 ppm group. Relative kidney weights of 50 ppm or greater males and relative liver weights of 200 and 400 ppm males were significantly greater than those of the chamber controls. A clear serous nasal/eye discharge was observed in groups of rats exposed to 100 ppm or greater. Minimal or mild rhinitis occurred in 400 ppm rats of both sexes. #### 2-WEEK STUDY IN MICE Groups of five male and five female mice were exposed by whole body inhalation to divinylbenzene-HP at target concentrations of 0, 25, 50, 100, 200, or 400 ppm for 6 hours plus T₉₀ (12 minutes) per
day, 5 days per week for 17 days. All 400 ppm males and females died on or before the second day of the study, and two male and two female 200 ppm mice died early. Final mean body weights and body weight gains of 100 and 200 ppm males were significantly less than those of the chamber controls. Thymus weights of exposed groups of males were significantly less than those of the chamber controls, and relative liver weights of 100 and 200 ppm males were significantly increased. Kidney and liver weights of exposed groups of females were significantly greater than those of the chamber controls. Mice exposed to 400 and 200 ppm had liver lesions including degeneration, necrosis, hemorrhage or cytomegaly. Renal tubule necrosis and regeneration occurred at 200 ppm. Necrosis or metaplasia of nasal epithelium and glands occurred in the nose in all exposure groups. #### 3-MONTH STUDY IN RATS Groups of 10 male and 10 female rats were exposed to divinylbenzene-HP at concentrations of 0, 25, 50, 100, 200, or 400 ppm for 6 hours plus T_{90} (12 minutes) per day, 5 days per week for 14 weeks. All rats survived to the end of the study. There were no biologically significant changes in body weight in either sex. Nasal/eye discharge was occasionally noted in groups exposed to 50 ppm or greater. Kidney and liver weights of exposed groups of males and of 400 ppm females were generally greater than those of the chamber controls. In addition, the relative weights of the heart and testis were significantly increased in 200 and 400 ppm males. Incidences of degeneration of the olfactory epithelium in 200 and 400 ppm rats and basal cell hyperplasia of the olfactory epithelium in rats exposed to 100 ppm or greater were significantly increased. #### 3-MONTH STUDY IN MICE Groups of 10 male and 10 female mice were exposed to divinylbenzene-HP at concentrations of 0, 12.5, 25, 50, 100, or 200 ppm for 6 hours plus T_{90} (12 minutes) per day, 5 days per week for 14 weeks. All 200 ppm males and nine 200 ppm females died early. Final mean body weights were significantly lower in males and females exposed to 25, 50, or 100 ppm when compared with chamber controls. Lethargy or hypoactivity was observed in the higher exposure concentration groups. Differences in organ weights were attributed to decreased body weights. Exposure to divinylbenzene was associated with necrosis of the liver and kidney of 200 ppm males and females dying early. In all exposed groups of male and female mice there was necrosis of nasal cavity lateral walls, olfactory epithelium, and glands with resultant atrophy of olfactory epithelium and glands in females. A lower number of animals had necrotic or degenerative changes of the upper respiratory tract. #### 2-YEAR STUDY IN RATS Groups of 50 male and 50 female rats were exposed to divinylbenzene-HP at concentrations of 0, 100, 200, or 400 ppm for 6 hours plus T_{90} (12 minutes) per day, 5 days per week for up to 105 weeks. Survival of 400 ppm females was significantly less than that of the chamber control group. Survival of all exposed groups of males was similar to that of the chamber control group. Mean body weights of 400 ppm males and females were significantly less than those of the controls during the second half of the study. Renal tubule carcinomas occurred in two of 50 males exposed to 400 ppm in the original kidney sections; an incidence that exceeded the historical control range. In 400 ppm males, the incidence of renal tubule hyperplasia was increased, and the incidence of nephropathy was significantly increased. Following combined analysis of single and step section data, the incidences of renal tubule adenoma and adenoma or carcinoma (combined) were marginally higher in 200 and 400 ppm males, and the incidence of renal tubule hyperplasia was significantly increased in 400 ppm males. The incidence of basal cell adenoma of the skin was slightly increased in 400 ppm males and exceeded the historical range in chamber controls. The incidences of malignant glial cell tumors (malignant astrocytoma and oligodendroglioma) in the brain were slightly increased in 100 and 200 ppm males, and the incidence in the 200 ppm group exceeded the historical range for chamber controls. There were increased incidences of degenerative and regenerative changes in the olfactory epithelium in the nose of all exposed groups of rats. The incidence of focal chronic inflammation in the lung of 400 ppm males was significantly greater than in the chamber control group. #### 2-YEAR STUDY IN MICE Groups of 50 male and 50 female mice were exposed to divinylbenzene-HP at concentrations of 0, 10, 30, or 100 ppm for 6 hours plus T_{90} (12 minutes) per day, 5 days per week for up to 105 weeks. Survival of all exposed groups of male and female mice was similar to that of the chamber controls. Group mean body weights were lower relative to controls in 100 ppm males and in 30 and 100 ppm females. The incidences of alveolar/bronchiolar adenoma and alveolar/bronchiolar adenoma or carcinoma (combined) in 100 ppm males were higher than chamber control incidences, but the incidences of adenoma or carcinoma (combined) were within the historical control range. The incidences of alveolar/bronchiolar adenoma and alveolar/bronchiolar adenoma or carcinoma (combined) in all exposed groups of females were generally greater than those of the chamber controls; the incidences were at the upper end or exceeded the historical control ranges. There was a greater incidence and severity of alveolar epithelial hyperplasia in 100 ppm females, and a greater severity of this lesion in 30 ppm females, when compared to chamber controls. The incidences and/or severity of atypical bronchiole hyperplasia were significantly increased in all exposed groups of mice. Nonneoplastic nasal lesions occurred in most exposed mice. #### GENETIC TOXICOLOGY Divinylbenzene-HP was not mutagenic in any of three independent gene mutation assays using *Salmonella typhimurium* strains TA97, TA98, TA100, TA1535, or TA1537 or *Escherichia coli* tester strain WPM uvrA with or without induced hamster or rat liver enzymes. No increases in the frequencies of micronucleated normochromatic erythrocytes or alterations in the percentages of polychromatic erythrocytes were seen in peripheral blood of male or female B6C3F₁ mice exposed to divinylbenzene-HP by inhalation for 3 months. #### Conclusions Under the conditions of this 2-year inhalation study, there was *equivocal evidence of carcinogenic activity** of divinylbenzene-HP in male F344/N rats based upon the occurrence of carcinomas in the kidney and glial tumors in the brain. There was *no evidence of carcinogenic activity* in female F344/N rats exposed to 100, 200, or 400 ppm divinylbenzene-HP. There was *no evidence of carcinogenic activity* in male B6C3F₁ mice exposed to 10, 30, or 100 ppm divinylbenzene-HP. There was *equivocal evidence of carcinogenic activity* of divinylbenzene-HP in female B6C3F₁ mice based on the incidences of alveolar/bronchiolar adenoma or carcinoma (combined) in the lung. Exposure to divinylbenzene-HP caused nonneoplastic lesions in the nasal cavity of male and female rats including degeneration of the olfactory epithelium and basal cell epithelial hyperplasia. Nonneoplastic lesions were observed in the lung and nasal cavity of exposed mice. Atypical bronchiolar hyperplasia and hyperplasia of the alveolar epithelium were observed in lung of male and female mice. In the nasal cavity of mice, suppurative inflammation, metaplasia of the respiratory and olfactory epithelium, and degeneration of the olfactory epithelium were present at all concentrations. ^{*} Explanation of Levels of Evidence of Carcinogenic Activity is on page 12. Summary of the 2-Year Carcinogenesis and Genetic Toxicology Studies of Divinylbenzene-HP | | Male
F344/N Rats | Female
F344/N Rats | Male
B6C3F ₁ Mice | Female
B6C3F ₁ Mice | |-----------------------|--|---|--|--| | Concentrations in air | Chamber control, 100, 200, or 400 ppm | Chamber control, 100, 200, or 400 ppm | Chamber control, 10, 30, or 100 ppm | Chamber control, 10, 30, or 100 ppm | | Body weights | 400 ppm group less than chamber control group | 400 ppm group less than chamber control group | 100 ppm group less than chamber control group | 30 and 100 ppm groups less than chamber control group | | Survival rates | Exposed groups similar to chamber control group | 400 ppm group less than chamber control group | Exposed groups similar to chamber control group | Exposed groups similar to chamber control group | | Nonneoplastic effects | Nose: olfactory epithelium, degeneration (0/50, 47/48, 49/50, 49/49); olfactory epithelium, hyperplasia, basal cell (0/50, 21/48,
44/50, 48/49); glands, dilatation (3/50, 30/48, 48/50, 46/49); goblet cell, hyperplasia (1/50, 3/48, 7/50, 16/49) | Nose: olfactory epithelium, degeneration (0/50, 50/50, 49/49, 48/49); olfactory epithelium, hyperplasia, basal cell (0/50, 25/50, 42/49, 48/49) | Lung: bronchiole, hyperplasia, atypical (0/49, 38/49, 46/49, 46/49); alveolar epithelium, hyperplasia (0/49, 5/49, 5/49, 7/49) Nose: inflammation, suppurative (3/50, 47/50, 49/49, 49/50); glands, respiratory epithelium, metaplasia (12/50, 50/50, 49/49, 50/50); olfactory epithelium, respiratory epithelium, metaplasia (1/50, 50/50, 49/49, 50/50); olfactory epithelium, degeneration, hyaline (5/50, 50/50, 48/49, 11/50) | Lung: bronchiole, hyperplasia, atypical (0/50, 39/50, 45/50, 48/49); alveolar epithelium, hyperplasia (4/50, 3/50, 4/50, 8/49) Nose: inflammation, suppurative (1/50, 50/50, 49/50, 49/49); glands, respiratory epithelium, metaplasia (3/50, 50/50, 50/50, 49/49); olfactory epithelium, respiratory epithelium, metaplasia (0/50, 50/50, 50/50, 49/49); olfactory epithelium, degeneration, hyaline (2/50, 50/50, 40/50, 8/49) | | Neoplastic effects | None | None | None | None | | Equivocal findings | Kidney: renal tubule carcinoma (standard evaluation - 0/50, 0/49, 0/50, 2/49); renal tubule adenoma or carcinoma (combined) (standard and extended evaluations - 0/50, 0/49, 2/50, 3/49) Brain: oligodendroglioma or astrocytoma (0/49, 1/50, 3/50, 0/50) | None | None | Lung:
alveolar/bronchiolar
adenoma or carcinoma
(6/50, 12/50, 8/50, 13/49) | ### Summary of the 2-Year Carcinogenesis and Genetic Toxicology Studies of Divinylbenzene-HP | | Male
F344/N Rats | Female
F344/N Rats | Male
B6C3F ₁ Mice | Female
B6C3F ₁ Mice | |---|---------------------|--|---------------------------------|-----------------------------------| | Levels of evidence of carcinogenic activity | Equivocal evidence | No evidence | No evidence | Equivocal evidence | | Genetic toxicology | | | | | | Salmonella typhimurium gene mutations: | | Negative in strains TA97, TA98, TA100, TA1535, and TA1537 and Escheria coli WPM uvrA with and without S9 | | | | Micronucleated erythrocyte | S | | | | | Mouse peripheral blood in | vivo: | Negative in both males and | females | | #### EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY The National Toxicology Program describes the results of individual experiments on a chemical agent and notes the strength of the evidence for conclusions regarding each study. Negative results, in which the study animals do not have a greater incidence of neoplasia than control animals, do not necessarily mean that a chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a chemical is carcinogenic for laboratory animals under the conditions of the study and indicate that exposure to the chemical has the potential for hazard to humans. Other organizations, such as the International Agency for Research on Cancer, assign a strength of evidence for conclusions based on an examination of all available evidence, including animal studies such as those conducted by the NTP, epidemiologic studies, and estimates of exposure. Thus, the actual determination of risk to humans from chemicals found to be carcinogenic in laboratory animals requires a wider analysis that extends beyond the purview of these studies. Five categories of evidence of carcinogenic activity are used in the Technical Report series to summarize the strength of the evidence observed in each experiment: two categories for positive results (clear evidence and some evidence); one category for uncertain findings (equivocal evidence); one category for no observable effects (no evidence); and one category for experiments that cannot be evaluated because of major flaws (inadequate study). These categories of interpretative conclusions were first adopted in June 1983 and then revised in March 1986 for use in the Technical Report series to incorporate more specifically the concept of actual weight of evidence of carcinogenic activity. For each separate experiment (male rats, female rats, male mice, female mice), one of the following five categories is selected to describe the findings. These categories refer to the strength of the experimental evidence and not to potency or mechanism. - Clear evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a dose-related (i) increase of malignant neoplasms, (ii) increase of a combination of malignant and benign neoplasms, or (iii) marked increase of benign neoplasms if there is an indication from this or other studies of the ability of such tumors to progress to malignancy. - Some evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a chemical-related increased incidence of neoplasms (malignant, benign, or combined) in which the strength of the response is less than that required for clear evidence. - Equivocal evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a marginal increase of neoplasms that may be chemical related. - No evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing no chemical-related increases in malignant or benign neoplasms. - Inadequate study of carcinogenic activity is demonstrated by studies that, because of major qualitative or quantitative limitations, cannot be interpreted as valid for showing either the presence or absence of carcinogenic activity. For studies showing multiple chemical-related neoplastic effects that if considered individually would be assigned to different levels of evidence categories, the following convention has been adopted to convey completely the study results. In a study with clear evidence of carcinogenic activity at some tissue sites, other responses that alone might be deemed some evidence are indicated as "were also related" to chemical exposure. In studies with clear or some evidence of carcinogenic activity, other responses that alone might be termed equivocal evidence are indicated as "may have been" related to chemical exposure. When a conclusion statement for a particular experiment is selected, consideration must be given to key factors that would extend the actual boundary of an individual category of evidence. Such consideration should allow for incorporation of scientific experience and current understanding of long-term carcinogenesis studies in laboratory animals, especially for those evaluations that may be on the borderline between two adjacent levels. These considerations should include: - · adequacy of the experimental design and conduct; - · occurrence of common versus uncommon neoplasia; - · progression (or lack thereof) from benign to malignant neoplasia as well as from pre-neoplastic to neoplastic lesions; - some benign neoplasms have the capacity to regress but others (of the same morphologic type) progress. At present, it is impossible to identify the difference. Therefore, where progression is known to be a possibility, the most prudent course is to assume that benign neoplasms of those types have the potential to become malignant; - combining benign and malignant tumor incidence known or thought to represent stages of progression in the same organ or tissue; - · latency in tumor induction; - multiplicity in site-specific neoplasia; - · metastases - supporting information from proliferative lesions (hyperplasia) in the same site of neoplasia or in other experiments (same lesion in another sex or species); - presence or absence of dose relationships; - statistical significance of the observed tumor increase; - · concurrent control tumor incidence as well as the historical control rate and variability for a specific neoplasm; - survival-adjusted analyses and false positive or false negative concerns; - · structure-activity correlations; and - in some cases, genetic toxicology. ## NATIONAL TOXICOLOGY PROGRAM BOARD OF SCIENTIFIC COUNSELORS TECHNICAL REPORTS REVIEW SUBCOMMITTEE The members of the Technical Reports Review Subcommittee who evaluated the draft NTP Technical Report on divinylbenzene-HP on September 27-28, 2005, are listed below. Subcommittee members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, subcommittee members have five major responsibilities in reviewing the NTP studies: - · to ascertain that all relevant literature data have been adequately cited and interpreted, - to determine if the design and conditions of the NTP studies were appropriate, - · to ensure that the Technical Report presents the experimental results and conclusions fully and clearly, - to judge the significance of the experimental results by scientific criteria, and - · to assess the evaluation of the evidence of carcinogenic activity and other observed toxic responses. #### Charlene A. McQueen, Ph.D., Chairperson College of Pharmacy University of Arizona Tucson, AZ #### Diane F. Birt, Ph.D. Department of Food Science & Human Nutrition Iowa State University Ames, IA #### Michael R. Elwell, D.V.M., Ph.D. Pathology, Drug Safety Evaluation Pfizer Global Research and Development Groton, CT #### Thomas A. Gasiewicz, Ph.D. Department of Environmental Medicine Environmental Health Sciences Center University of Rochester School of Medicine Rochester, NY #### John P. Giesy, Jr., Ph.D. Department of Zoology Michigan State University East Lansing, MI #### Shuk-Mei Ho, Ph.D. Department of Surgery, Division of Urology University of Massachusetts Medical School Worcester, MA #### Stephen M. Roberts, Ph.D. Center for Environmental & Human Toxicology University of Florida Gainesville, FL #### Mary Vore, Ph.D. Graduate Center for Toxicology University
of Kentucky Lexington, KY #### Special Ad Hoc Reviewers Kenny Crump, Ph.D. Environ International Ruston, LA #### Prescott Deininger, Ph.D. Tulane University Medical Center New Orleans, LA #### Harish Sikka, Ph.D. Environmental Toxicology and Chemistry Laboratory State University of New York College at Buffalo Buffalo, NY #### Keith Soper, Ph.D. Merck Research Laboratories West Point, PA #### Vernon Walker, Ph.D. Lovelace Respiratory Institute Albuquerque, NM #### SUMMARY OF TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS **NOTE:** A summary of the Technical Reports Review Subcommittee's remarks will appear in a future draft of this report. ## INTRODUCTION $$H_2C=HC$$ #### **DIVINYLBENZENE-HP** CAS No. 1321-74-0 Chemical Formula: C₁₀H₁₀ Molecular Weight: 130.189 **Synonyms:** Benzene, diethenyl-(9CI); diethenylbenzene; divinyl benzene; divinylbenzene-HP (high purity); divinylbenzene (*m*- and *p*-mixture); divinylbenzene (*m*-, *p*-mixture); divinyl benzene, mixed isomers; DVB; DVB-HP; *m*- (or *p*-) divinylbenzene; vinylstyrene #### CHEMICAL AND PHYSICAL PROPERTIES Divinylbenzene exists as o-, m-, and p-isomers; the commercial forms contain m- and p-divinylbenzenes, ethylvinylbenzenes, and diethylbenzenes (HSDB, 2005). The commercial grade containing 55% divinylbenzene is a pale, straw-colored liquid with a boiling point of 195° C and a density of 0.918 at 25° C. It is insoluble in water and soluble in methanol and ether. Because it is an explosion risk, it contains an inhibitor. #### PRODUCTION, USE, AND HUMAN EXPOSURE Divinylbenzene is a specialty monomer used primarily to make cross-linked polystyrene resins (*Kirk-Othmer*, 1983). Divinylbenzene monomer is manufactured by dehydrogenation of mixed isomeric diethylbenzenes (Figure 1). After removal of light by-products, the product is recovered as a mixture of *m*- and *p*-divinylbenzene and *m*- and *p*-ethylvinylbenzene, the partial dehydrogenation product. *o*-Diethylbenzene in the starting material is converted to naphthalene. Because the divinylbenzene monomer readily polymerizes to a brittle ## Diethylbenzene ## Divinylbenzene and Ethylvinylbenzene FIGURE 1 Dehydrogenation of Diethylbenzene to Divinylbenzene Monomer insoluble resin, it is heavily inhibited with *tert*-butyl catechol and diluted with ethylvinylbenzene to minimize this reaction. Three commercial grades of divinylbenzene are produced containing approximately 22% (DVB-22), 55% (DVB-55), and 80% (DVB-HP) divinylbenzene (Table 1). Divinylbenzene-HP was the highest purity grade commercially available (80%) and was used in the studies presented in this Technical Report. By far, the greatest use of divinylbenzene is as a cross-linking monomer for copolymerization with styrene or with acrylic and methacrylic acids to produce ion-exchange resins used in water treatment and in the chemical and pharmaceutical industries (Coulter and Kehde, 1970; *Kirk-Othmer*, 1981; 1983). Copolymerization with styrene results in resins with reduced solubility in most solvents, increased heat-distortion temperatures, increased surface hardness, and improved impact and tensile strengths (*Kirk-Othmer*, 1983). Divinylbenzene is also used in styrene-butadiene rubber to improve the swelling, shrinkage, and extrusion properties of the product (*Kirk-Othmer*, 1983). The divinylbenzene monomer has been used as a sustained release agent, as a dental filling component, and as an insecticide stabilizer (*Patty's*, 1981). Occupational exposure to divinylbenzene occurs primarily by inhalation and dermal contact, consequently, divinylbenzene is an irritant to the eyes and respiratory system (*Patty's*, 1981). The current Occupational Safety and Health Administration threshold limit value (8-hour time-weighted average) for divinylbenzene is 10 ppm (ACGIH, 2004). TABLE 1 Composition of Divinylbenzene Commercial Grades | | DVB-22 | DVB-55 | DVB-80 (HP) | | |-----------------------|--------|--------|-------------|--| | Divinylbenzene (%) | | | | | | meta | 17.1 | 36.4 | 60.3 | | | para | 8.2 | 18.6 | 21.6 | | | Ethylvinylbenzene (%) | | | | | | meta | 23.1 | 25.0 | 6.7 | | | para | 10.0 | 13.0 | 6.8 | | | Inhibitors (ppm) | | | | | | tert-Butylcatechol | 1,000 | 1,000 | 1,200-1,500 | | | Sulfur | 20 | 230 | 240 | | #### ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION #### Experimental Animals Divinylbenzene is structurally similar to styrene and is likely biotransformed by the same metabolic pathways. Styrene is metabolized in animals and humans by cytochrome P450 to styrene-7,8-epoxide, a direct-acting carcinogen (IARC, 1987), and because divinylbenzene is likely oxidized to a similar epoxide or diepoxide, there is concern about the potential carcinogenicity of this chemical. Because divinylbenzene has two reactive vinyl groups, it may be metabolized to a toxic epoxide more readily than styrene. In addition, commercial formulations of divinylbenzene contain a significant amount of ethylvinylbenzene that could also be metabolized to a reactive epoxide. An ADME study of [¹⁴C] *m*-divinylbenzene in male F344 rats with oral exposures of 40, 200, and 1,200 mg/kg and an intravenous dose of 40 g/kg has been reported (Jeffcoat *et al.*, 1990). The majority of the [¹⁴C] *m*-divinylbenzene-derived radioactivity was excreted in urine. The amount excreted in urine increased as the oral dose increased, 72% for 40 mg/kg to 89% for 1,200 mg/kg. Excretion in urine following intravenous dosing was 82%, approximately the same as from oral administration, indicating nearly complete absorption of the oral exposures. The authors speculated that excretion in bile was saturated at the high exposure, leading to a greater percentage of the dose in urine. A repeated dose study did not lead to accumulation of [¹⁴C] *m*-divinylbenzene-derived radioactivity in tissue and indicated induction of metabolism. HPLC analysis of urine indicated the presence of at least 12 metabolites. The major metabolite was identified as the mono-glucuronide of 3-(ethenylphenyl) ethanediol. The metabolism of each of the 3 isomers of divinylbenzene in Wistar rats has been reported by Linhart *et al*. (1989, 1992, 1996). A composite of their findings is presented in Figure 2. The identification of metabolites included acid/base extraction, column chromatography on silica gel, treatment with diazomethane and analysis by gas chromatography-mass spectrometry. FIGURE 2 Metabolic Pathway for Divinylbenzenes Brackets indicate reactive intermediates not directly identified. Those metabolites identified in urine of Wistar rats treated with *ortho*-divinylbenzene are labeled [o], likewise [m] for *meta*- and [p] for *para*-divinylbenzene. #### Humans An *in vitro* study comparing metabolism of *m*-divinylbenzene in liver slices from rats, mice, and humans determined that epoxidation, hydrolysis of the epoxide, and glucuronidation of the resulting diol was the main metabolic pathway in all three species. Both monoglucuronides of the diol were identified (Jeffcoat, 1999). #### **TOXICITY** #### **Experimental Animals** Morgan *et al.* (1997) exposed male and female B6C3F₁ mice to 0, 25, 50, or 75 ppm divinylbenzene-55 in air 6 hours per day, 5 days per week for up to 2 weeks. Six mice per sex per group were killed after three, five, and 10 exposures, and six mice per sex in the 75 ppm group were killed 7 days after the tenth exposure. The most severe effects occurred in the nasal cavity and liver with less severe effects in the kidneys. In the nasal cavity olfactory epithelium, acute necrosis and inflammation were present at early time points followed by regeneration, architectural reorganization, and focal respiratory metaplasia by 7 days after the last exposure. Olfactory epithelial changes were concentration-dependent with extensive involvement at 75 ppm and peripheral sparing at 25 ppm. There were also necrosis and regeneration of olfactory-associated Bowman's glands as well as the lateral nasal (Steno's) glands. Hepatocellular centrilobular necrosis was observed only in the 75 ppm group and was similar to that caused by styrene. A time-dependent progression was observed, characterized by centrilobular degeneration after one exposure, necrosis after three and five exposures, and chronic inflammation with centrilobular karyomegaly after 10 exposures and 7 days after the tenth exposure. Hepatic concentrations of reduced glutathione were decreased in a dose-dependent manner throughout the 2-week study. In the kidneys, transient tubular damage observed in some male mice exposed to 75 ppm appeared to be a response to divinylbenzene-induced tubular epithelial injury. #### Humans There was no data available on the toxicity of divinylbenzene in humans. #### REPRODUCTIVE AND DEVELOPMENTAL TOXICITY There was no data available on the reproductive and developmental toxicity of divinylbenzene in experimental animals or humans. #### **CARCINOGENICITY** There have been no carcinogenicity studies of divinylbenzene in experimental animals or epidemiology studies in humans. #### **GENETIC TOXICITY** Zeiger *et al.* (1987) reported that divinylbenzene-55 was negative for mutagenicity in *Salmonella* strains TA98, TA100, TA1535, and TA1537 at concentrations up to 666 μ g/plate both with and without microsomal activation. In an abstract (Knaap *et al.*, 1985), a Dutch research group examined a 70% mixture of divinylbenzene isomers in ethylvinylbenzene in a fluctuation test with *Klebsiella pneumoniae* to a concentration of 55 μ L/L, the Ames assay with TA98 and TA100 with and without activation up to 0.5 μ L/plate, the sex-linked recessive lethal test in *Drosophila* at 100 μ mol/L by injection, and the L5178Y mouse lymphoma mutation system (TK $^-$ and HPR $^-$ mutation assays) with and without activation from 6 × 10 $^{-3}$ to 18 × 10 $^{-3}$ μ L/mL. Divinylbenzene (70%) was uniformly negative in all tests. Kligerman *et al.* (1996) investigated the genotoxic potential of
divinylbenzene-55 in B6C3F₁ mice following a 3-day inhalation exposure (6 hours per day) to 0, 25, 50, or 75 ppm. Following exposure, blood smears were prepared for micronucleus analysis, and the spleens were removed and cultured for sister chromatid exchange and chromosomal aberration analyses. Divinylbenzene-55 induced a dose-dependent increase in sister chromatid exchange with the two highest concentrations reaching statistical significance. Similarly, there were statistically significant, although less pronounced, increases in the frequencies of chromosomal aberrations in splenocytes and micronuclei in polychromatic erythrocytes. There was no indication of toxicity as measured by cell cycle kinetics in the splenocytes or the percentage of polychromatic erythrocytes in the peripheral blood smears. The authors concluded that divinylbenzene-55 was a weak genotoxicant. #### STUDY RATIONALE The toxicity and carcinogenicity of inhaled divinylbenzene was investigated because of the potential for worker exposure and the structural similarity of divinylbenzene to styrene, a potential human carcinogen (IARC, 1987). The bifunctionality conferred by the two vinyl groups makes divinylbenzene a highly reactive cross-linking agent that may also contribute to its toxicity. ## **MATERIALS AND METHODS** #### PROCUREMENT AND CHARACTERIZATION OF DIVINYLBENZENE-HP Divinylbenzene-HP (80% divinylbenzene with 20% ethylvinylbenzene) was obtained from Dow Chemical Company (Midland, MI) in two lots (LJ31012V18 and ND13012V23). Lot LJ31012V18 was used in the 2-week and 3-month studies, and lot ND13012V23 was used during the 2-year studies. Identity and purity analyses were conducted by the analytical chemistry laboratory, Research Triangle Institute (Research Triangle Park, NC); Chemir/Polytech Laboratories, Inc. (Maryland Heights, MO); and the study laboratory, Battelle Northwest Operations (Richland, WA). Reports on analyses performed in support of the divinylbenzene-HP studies are on file at the National Institute of Environmental Health Sciences. Lots LJ31012V18 and ND13012V23, pale, straw-colored liquids with a hydrocarbon odor, were identified as divinylbenzene-HP using infrared (IR) and proton nuclear magnetic resonance (NMR) spectroscopy and gas chromatography/mass spectrometry (GC/MS). The IR, proton NMR, and GC/MS spectra were consistent with reference and literature spectra of divinylbenzene-HP. The purity of both lots was determined using GC with flame ionization detection (FID). For both lots, elemental analyses and moisture analyses by Karl Fischer titration were performed, and concentrations of 4-*tert*-butylcatechol added as a polymerization inhibitor were measured using GC, high-performance liquid chromatography (HPLC), or ultraviolet/visible (UV/Vis) spectroscopy. Polymer concentrations were measured in both lots using a UV/Vis turbidity assay. For lot LJ31012V18, elemental analyses for carbon and hydrogen were in agreement with the theoretical values for divinylbenzene-HP (80% divinylbenzene with 20% ethylvinylbenzene). Karl Fischer titration indicated a moisture content of 87 ± 5 ppm. Polymer content and 4-*tert*-butylcatechol concentrations were well within the specifications of < 20 ppm and > 600 ppm, respectively. GC/FID and GC/MS detected four major peaks that were identified as the *meta*- and *para*-isomers of divinylbenzene and ethylvinylbenzene; the percent total area of the divinylbenzene isomers was 79.3%. GC/FID and GC/MS, using different systems, detected four major peaks and two minor impurity peaks; the minor peaks had areas of approximately 0.1% of the total peak area. The percent total area of the divinylbenzene isomers was 80.2%. Measured as the sum of the *meta*- and *para*-isomers of divinylbenzene, the overall purity of lot LJ31012V18 was determined to be approximately 80%. For lot ND13012V23, elemental analyses for carbon, hydrogen, nitrogen, and sulfur were in agreement with the theoretical values for divinylbenzene-HP. Karl Fischer titration indicated a moisture content of approximately 200 ppm. Polymer content and 4-tert-butylcatechol concentrations were well within the specifications of < 20 ppm and > 600 ppm, respectively. GC/FID and GC/MS, using different systems, detected four major peaks that were identified as the meta- and para-isomers of divinylbenzene and ethylvinylbenzene; the percent total area of the divinylbenzene isomers was 81.2%. GC/FID indicated a purity exceeding 99.9% relative to a reference standard. GC/FID and GC/MS, using different systems, detected four major peaks and one minor impurity peak having an area percent of 0.13%; the retention time of this minor peak matched that of naphthalene. The percent total area of the divinylbenzene isomers was 81%. Measured as the sum of the *meta*- and *para*-isomers of divinylbenzene, the overall purity of lot ND13012V23 was determined to be approximately 81%. The bulk chemical was stored in its original shipping containers, 5-gallon metal pails, at approximately -20° C. Periodic reanalyses of area percent purity and purity relative to a reference standard stored at -70° C were conducted during the 3-month and 2-year studies with GC/FID. Periodic reanalyses of polymer and 4-tert-butylcatechol content were conducted using GC/FID and HPLC during the 3-month and 2-year studies, respectively. No degradation of the bulk chemical was detected, and polymer and 4-tert-butylcatechol concentrations remained within the specifications of < 20 ppm and > 600 ppm, respectively. #### VAPOR GENERATION AND EXPOSURE SYSTEM Preheated divinylbenzene-HP was pumped onto glass beads in a heated glass column where it was vaporized. Heated air flowed through the column and carried the vapor out of the generator. Generator output was controlled by the delivery rate of the chemical metering pump. The vapor was transported to the exposure room at an elevated temperature to prevent condensation. In the exposure room, the vapor was mixed with additional heated air before entering a short vapor distribution manifold. Concentration in the manifold was determined by the chemical pump rate, generator air flow rate, and dilution air flow rate. An electronically actuated metering valve controlled the flow to each chamber; a pneumatically operated chamber exposure shutoff valve in line with the metering valve stopped flow to the chamber. In addition, for the chambers used for the two lowest exposure concentrations in each study, a compressed air vacuum pump was attached to the chamber end of the delivery line and used for fine control of the vapor delivery rate. When the exposure started, the chamber exposure valves were opened to allow the vapor to flow through the metering valves and then through temperature-controlled delivery lines to each exposure chamber. The vapor was then injected into the chamber inlet duct where it was further diluted with conditioned chamber air to achieve the desired exposure concentration. The study laboratory designed the inhalation exposure chamber (H-2000; Harford Systems Division of Lab Products, Inc., Aberdeen, MD) so that uniform vapor concentrations could be maintained throughout the chamber with the catch pans in place. The total active mixing volume of each chamber was 1.7 m³. A condensation particle counter (Model 3022A, TSI, Inc., St. Paul, MN) was used to count the particles in the rooms (2-week and 3-month studies) and all exposure chambers (all studies) before the start of generation and during generation to determine whether divinylbenzene-HP vapor, and not aerosol, was produced. Low levels of particulate material above that typically observed as background in control and treated chambers were detected in exposure chambers during the 3-month studies. However, there was no consistent difference between measurements made before and during exposure and no trend toward increased particulate levels with increased concentration except for the 400 ppm chamber in the 13-week study, which showed slightly higher particulate levels compared to other chambers. In the 3-month studies, there was no airflow in the heated delivery lines between exposures. During the 2-year studies, a continuous flow of compressed air through the heated delivery lines was continued between exposures as well as during the exposures to purge the system of any divinylbenzene that might subsequently form aerosols or polymerize. Measurements before and during 2-year study exposure periods did not show any significant particulate levels above background, even in the 400 ppm chambers. #### VAPOR CONCENTRATION MONITORING Concentrations of divinylbenzene-HP in the exposure chambers were monitored by an on-line gas chromatograph equipped with FID. Samples were drawn from each exposure chamber approximately every 36 minutes using Hastelloy-C gas-sampling and stream-select valves in a separate, heated valve oven. The on-line gas chromatograph was checked throughout the day for instrument drift by analyzing an on-line standard of 1,4-diethylbenzene in nitrogen supplied by a diffusion tube standard generator. The on-line gas chromatograph was calibrated during routine exposure periods by a comparison of chamber concentration data to data from grab samples that were collected with charcoal sampling tubes, extracted with toluene containing 1-phenylhexane as an internal standard, and analyzed by an off-line gas chromatograph. The volumes of gas were sampled at a constant flow rate ensured by a calibrated critical orifice. The off-line gas chromatograph was calibrated with gravimetrically prepared standards of divinylbenzene-HP and the internal standard (1-phenylhexane) in toluene. #### CHAMBER ATMOSPHERE CHARACTERIZATION Buildup and decay rates for chamber vapor concentrations were determined with animals present in the chambers. At a chamber airflow rate of 15 air changes per hour, the theoretical value for the time to achieve 90% of the target concentration after
the beginning of vapor generation (T_{90}) and the time for the chamber concentration to decay to 10% of the target concentration after vapor generation was terminated (T_{10}) was approximately 12.5 minutes. Based on experimental data, a T_{90} value of 12 minutes was selected for all studies. Throughout the studies, concentration uniformity, persistance and stability of the chemical, and degradation impurities were monitored in the chambers. Chamber concentration uniformity was maintained, no degradation was observed, and no impurities other than those in the bulk chemical were observed. #### 2-WEEK STUDIES Male and female F344/N rats and B6C3F₁ mice were obtained from Taconic (Germantown, NY). On receipt, the rats and mice were 4 weeks old. Animals were quarantined for 13 days and were 6 weeks old on the first day of the studies. Groups of five male and five female rats and mice were exposed by whole body inhalation to divinylbenzene-HP at target concentrations of 0, 25, 50, 100, 200, or 400 ppm 6 hours plus T₉₀ (12 minutes) per day, 5 days per week for 12 exposures over a period of 16 days (rats) or 13 exposures over a period of 17 days (mice). Feed was available *ad libitum* except during exposure periods; water was available *ad libitum*. Rats and mice were housed individually. Clinical findings were recorded daily for rats and mice. The animals were weighed initially, on days 4 and 13, and at the end of the studies. At the end of the studies, serologic analyses were performed on chamber control rats and mice using the protocols of the NTP Sentinel Animal Program (Appendix K). Details of the study design and animal maintenance are summarized in Table 2. Necropsies were performed on all rats and mice. The heart, right kidney, liver, lung, right testis, and thymus were weighed. Histopathologic examinations of the kidney, liver, lung, and nose were performed on rats and mice from the chamber control and 400 ppm groups, and the remaining groups were examined to a no-effect level. Table 2 lists the tissues and organs examined. #### 3-MONTH STUDIES The 3-month studies were conducted to evaluate the cumulative toxic effects of repeated exposure to divinylbenzene-HP and to determine the appropriate exposure concentrations to be used in the 2-year studies. Male and female F344/N rats and B6C3F₁ mice were obtained from Taconic (Germantown, NY). On receipt, the rats and mice were 4 weeks old. Animals were quarantined for 13 to 14 days and were 6 weeks old on the first day of the studies. Before the studies began, five male and five female rats and mice were randomly selected for parasite evaluation and gross observation for evidence of disease. At the end of the studies, serologic analyses were performed on five male and five female clinical pathology rats and five male and five female chamber control mice using the protocols of the NTP Sentinel Animal Program (Appendix K). Groups of 10 male and 10 female rats were exposed to divinylbenzene-HP at concentrations of 0, 25, 50, 100, 200, or 400 ppm for 6 hours plus T_{90} (12 minutes) per day, 5 days per week for 14 weeks; additional groups of 10 male and 10 female clinical pathology study rats were exposed to the same concentrations for 23 days. Groups of 10 male and 10 female mice were exposed to divinylbenzene-HP at concentrations of 0, 12.5, 25, 50, 100, or 200 ppm for 6 hours plus T_{90} (12 minutes) per day, 5 days per week for 14 weeks. Feed was available *ad libitum* except during exposure periods; water was available *ad libitum*. All animals were housed individually. Clinical findings were recorded twice daily for rats and mice. Core study animals were weighed initially, on day 10 or 11, weekly thereafter, and at the end of the studies. Details of the study design and animal maintenance are summarized in Table 2. Animals were anesthetized with carbon dioxide, and blood was collected from the retroorbital sinus of clinical pathology rats on days 3 and 23 and from core study rats at study termination for hematology and clinical chemistry analyses. Blood was collected from the supraorbital sinus of mice at the end of the study for hematology analyses. Samples for hematology analyses were placed in microcollection tubes containing potassium EDTA; samples for clinical chemistry evaluations were placed in similar tubes containing a separator gel. Packed cell volume; hemoglobin concentration; erythrocyte, platelet, and leukocyte counts; mean cell volume; mean cell hemoglobin; and mean cell hemoglobin concentration were determined with a Roche Cobas Helios hematology analyzer (Roche Diagnostics, Branchburg, NJ). Manual hematocrit values were determined using a Damon/IEC MB microcentrifuge (International Equipment Company, Needham Heights, MA) and capillary reader (Damon IEC) for comparison to Cobas values for packed cell volume. A Miller disc was used to determine reticulocyte counts from smears prepared with blood stained with new methylene blue. Blood smears were prepared and stained using a Wescor Aerospray 7100 slide stainer (Wescor, Inc., Logan, UT). Classifying the leukocytes in a minimum 100-cell count completed the leukocyte differential. For clinical chemistry analyses, serum samples were analyzed using Roche Cobas Fara methodologies. The parameters measured are listed in Table 2. At the end of the 3-month studies, samples were collected for sperm count and motility and vaginal cytology evaluations on rats exposed to 0, 100, 200, or 400 ppm and mice exposed to 0, 25, 50, or 100 ppm. The parameters evaluated are listed in Table 2. For 12 consecutive days prior to scheduled terminal sacrifice, the vaginal vaults of the females were moistened with saline, if necessary, and samples of vaginal fluid and cells were stained. Relative numbers of leukocytes, nucleated epithelial cells, and large squamous epithelial cells were determined and used to ascertain estrous cycle stage (i.e., diestrus, proestrus, estrus, and metestrus). Male animals were evaluated for sperm count and motility. The left testis and left epididymis were isolated and weighed. The tail of the epididymis (cauda epididymis) was then removed from the epididymal body (corpus epididymis) and weighed. Test yolk (rats) or modified Tyrode's buffer (mice) was applied to slides and a small incision was made at the distal border of the cauda epididymis. The sperm effluxing from the incision were dispersed in the buffer on the slides, and the numbers of motile and nonmotile spermatozoa were counted for five fields per slide by two observers. Following completion of sperm motility estimates, each left cauda epididymis was placed in buffered saline solution. Caudae were finely minced, and the tissue was incubated in the saline solution and then heat fixed at 65° C. Sperm density was then determined microscopically with the aid of a hemacytometer. To quantify spermatogenesis, the testicular spermatid head count was determined by removing the tunica albuginea and homogenizing the left testis in phosphate-buffered saline containing 10% dimethyl sulfoxide. Homogenizationresistant spermatid nuclei were counted with a hemacytometer. Necropsies were performed on all core study animals. The heart, right kidney, liver, lung, right testis, and thymus were weighed. Tissues for microscopic examination were fixed and preserved in 10% neutral buffered formalin, processed and trimmed, embedded in paraffin, sectioned to a thickness of 4 to 6 µm, and stained with hematoxylin and eosin. Complete histopathologic examinations were performed on chamber control rats and those exposed to 400 ppm divinylbenzene-HP; the lung and nose were examined in all groups, and the remaining tissues were examined to a no-effect level in the remaining groups. Complete histopathologic examinations were performed on 0, 100, and 200 ppm mice, and the tissues in the remaining groups were examined to a no effect level. Table 2 lists the tissues and organs routinely examined. #### 2-YEAR STUDIES #### **Study Design** Groups of 50 male and 50 female rats were exposed to divinylbenzene-HP at concentrations of 0, 100, 200, or 400 ppm 6 hours plus T_{90} (12 minutes) per day, 5 days per week for up to 105 weeks. Groups of 50 male and 50 female mice were exposed to divinylbenzene-HP at concentrations of 0, 10, 30, or 100 ppm, 6 hours plus T_{90} (12 minutes) per day, 5 days per week for up to 105 weeks. #### **Source and Specification of Animals** Male and female F344/N rats and B6C3F₁ mice were obtained from Taconic (Germantown, NY) for use in the 2-year studies. Rats and mice were quarantined for 11 days before the beginning of the studies. Five male and five female rats and mice were randomly selected for parasite evaluation and gross observation of disease. Rats and mice were approximately 4 weeks old at the beginning of the studies. The health of the animals was monitored during the studies according to the protocols of the NTP Sentinel Animal Program (Appendix K). #### **Animal Maintenance** All rats and mice were housed individually. Feed was available *ad libitum* except during exposure periods; water was available *ad libitum*. Cages and racks were changed and rotated once weekly. Further details of animal maintenance are given in Table 2. Information on feed composition and contaminants is provided in Appendix J. #### **Clinical Examinations and Pathology** All animals were observed twice daily. Clinical findings and body weights (after initial weights on day 1) were recorded on week 5, every 4 weeks through week 89, at week 92, then every 2 weeks, and at terminal sacrifice. Complete necropsies and microscopic examinations were performed on all rats and mice. At necropsy, all organs and tissues were examined for grossly visible lesions, and all collected tissues were fixed and preserved in 10% neutral buffered formalin, processed and trimmed, embedded in paraffin, sectioned, and stained with hematoxylin and eosin for microscopic
examination. For all paired organs (e.g., adrenal gland, kidney, ovary), samples from each organ were examined. For extended evaluation of renal proliferative lesions, kidneys were step sectioned at 1 mm intervals from the residual cross sectional half of the right kidney and the longitudinal half of the left kidney from male rats. Sectioning of the left and right kidney resulted in a maximum of four sections per kidney. Tissues examined microscopically are listed in Table 2. Microscopic evaluations were completed by the study laboratory pathologist, and the pathology data were entered into the Toxicology Data Management System. The slides, paraffin blocks, and residual wet tissues were sent to the NTP Archives for inventory, slide/block match, and wet tissue audit. The slides, individual animal data records, and pathology tables were evaluated by an independent quality assessment laboratory. The individual animal records and tables were compared for accuracy, the slide and tissue counts were verified, and the histotechnique was evaluated. For the 2-year studies, a quality assessment pathologist evaluated slides from all tumors and all potential target organs, which included the brain, liver, lung, nose, pituitary gland, pleura, and spleen of male and female rats; the kidney and pancreas of male rats; the adrenal cortex, eye, liver, lung, and nose of male and female mice; and the kidney of male mice. The quality assessment report and the reviewed slides were submitted to the NTP Pathology Working Group (PWG) chairperson, who reviewed the selected tissues and addressed any inconsistencies in the diagnoses made by the laboratory and quality assessment pathologists. Representative histopathology slides containing examples of lesions related to chemical administration, examples of disagreements in diagnoses between the laboratory and quality assessment pathologists, or lesions of general interest were presented by the chairperson to the PWG for review. The PWG consisted of the quality assessment pathologist and other pathologists experienced in rodent toxicologic pathology. This group examined the tissues without any knowledge of dose groups or previously rendered diagnoses. When the PWG consensus differed from the opinion of the laboratory pathologist, the diagnosis was changed. Final diagnoses for reviewed lesions represent a consensus between the laboratory pathologist, reviewing pathologist(s), and the PWG. Details of these review procedures have been described, in part, by Maronpot and Boorman (1982) and Boorman *et al.* (1985). For subsequent analyses of the pathology data, the decision of whether to evaluate the diagnosed lesions for each tissue type separately or combined was generally based on the guidelines of McConnell *et al.* (1986). TABLE 2 Experimental Design and Materials and Methods in the Inhalation Studies of Divinylbenzene-HP | 2-Week Studies | 3-Month Studies | 2-Year Studies | |---|--|--| | Study Laboratory | | | | Battelle Northwest Operations (Richland, WA) | Battelle Toxicology Northwest (Richland, WA) | Battelle Toxicology Northwest (Richland, WA) | | Strain and Species | 72443 | T04407 | | F344/N rats
B6C3F ₁ mice | F344/N rats
B6C3F ₁ mice | F344/N rats
B6C3F ₁ mice | | Animal Source Taconic (Germantown, NY) | Taconic (Germantown, NY) | Taconic (Germantown, NY) | | Time Held Before Studies | 1400me (committee) 1,111 | | | 13 days | Male rats and mice: 13 days
Female rats and mice: 14 days | 11 days | | Average Age When Studies Began | | | | 6 weeks | 6 weeks | 6 weeks | | Date of First Exposure
February 23, 1998 | Male rats and mice: June 22, 1998 | Rats: September 13, 1999 | | 10014411 20, 1770 | Female rats and mice: June 23, 1998 | Mice: September 27, 1999 | | Duration of Exposure Rats: 6 hours plus T ₉₀ (12 minutes) per day, 5 days per week, for 16 days (12 exposures) Mice: 6 hours plus T ₉₀ (12 minutes) per day, 5 days per week, for 17 days (13 exposures) | 6 hours plus T ₉₀ (12 minutes) per day,
5 days per week, for 14 weeks | 6 hours plus T ₉₀ (12 minutes) per day,
5 days per week, for up to 105 weeks | | Date of Last Exposure | | | | Rats: March 10, 1998
Mice: March 11, 1998 | Rats: September 21, 1998 (males);
September 22, 1998 (females)
Mice: September 23, 1998 (males);
September 24, 1998 (females) | Rats: September 13, 2001
Mice: September 27, 2001 | | Necropsy Dates | | | | Rats: March 11, 1998
Mice: March 12, 1998 | Rats: September 22, 1998 (males);
September 23, 1998 (females)
Mice: September 24, 1998 (males);
September 25, 1998 (females) | Rats: September 10-14, 2001
Mice: September 24-28, 2001 | | Average Age at Necropsy
8 weeks | 19 weeks | 110 weeks | | Size of Study Groups Five males and five females | Core studies: 10 males and 10 females
Clinical pathology study: 10 male
and 10 female rats
Mice: 10 males and 10 females | 50 males and 50 females | TABLE 2 Experimental Design and Materials and Methods in the Inhalation Studies of Divinylbenzene-HP | 2-Week Studies | 3-Month Studies | 2-Year Studies | |---|--|---| | Method of Distribution Animals were distributed randomly into groups of approximately equal initial mean body weights. | Same as 2-week studies | Same as 2-week studies | | Animals per Cage | 1 | 1 | | Method of Animal Identification Tail tattoo | Tail tattoo | Tail tattoo | | Diet NTP-2000 irradiated pellets (Zeigler Brothers, Inc., Gardners, PA), available <i>ad libitum</i> , except during exposure periods, changed weekly | Same as 2-week studies | Same as 2-week studies | | Water Tap water (Richland, WA, municipal supply) via automatic watering system (Edstrom Industries, Waterford, WI), available ad libitum | Same as 2-week studies | Same as 2-week studies | | Cages
Stainless-steel wire-bottom (Hazleton
System, Inc., Aberdeen, MD), changed
weekly | Same as 2-week studies | Stainless-steel wire-bottom (Lab Products, Inc., Seaford, DE), changed weekly | | Chamber Air Supply Filters Single HEPA (Northland Filter System International; Mechanicville, NY), charcoal (RSE, Inc.; New Baltimore, MI), Purafil (Environmental Systems, Lynnwood, WA) | Same as 2-week studies | Single HEPA (Environmental Filter; Santa
Rosa, CA), charcoal (RSE, Inc; New
Baltimore, MI), Purafil (Environmental
Systems; Lynnwood, WA), changed weekly
with chambers, rotated weekly in chambers | | Chambers Stainless-steel with excreta pan suspended below each cage unit (Harford System, Division of Lab Products, Inc.; Aberdeen, MD) | Same as 2-week studies | Stainless-steel chambers, excreta pan at each of six levels (Lab Products, Inc., Seaford, DE), excreta pans changed daily | | Chamber Environment Temperature: 72° ± 3° F Relative humidity: 50% ± 15% Room fluorescent light: 12 hours/day Chamber air changes: 10/hour | Temperature: 72° ± 3° F Relative humidity: 50% ± 15% Room fluorescent light: 12 hours/day Chamber air changes: 10/hour | Temperature: $72^{\circ} \pm 3^{\circ}$ F
Relative humidity: $50\% \pm 15\%$
Room fluorescent light: 12 hours/day
Chamber air changes: 10/hour | | Exposure Concentrations 0, 25, 50, 100, 200, or 400 ppm in air | Rats: 0, 25, 50, 100, 200, or 400 ppm in air
Mice: 0, 12.5, 25, 50, 100, or 200 ppm in air | Rats: 0, 100, 200, or 400 ppm in air
Mice: 0, 10, 30, or 100 ppm in air | TABLE 2 Experimental Design and Materials and Methods in the Inhalation Studies of Divinylbenzene-HP | 2-Week Studies | 3-Month Studies | 2-Year Studies | |--|--|---| | Type and Frequency of Observation Observed twice daily; clinical findings recorded daily postexposure; body weights recorded on days 1, 6, 13, and at terminal sacrifice. | Observed twice daily; body weights recorded day 1, weights and clinical findings recorded days 10 (females) or 11 (males), weekly thereafter, and at
terminal sacrifice on core study rats and mice | Observed twice daily; body weights recorded day 1, clinical findings and body weights recorded week 5 and every 4 weeks thereafter through week 89, week 92 and every 2 weeks thereafter, and at terminal sacrifice | | Method of Sacrifice
Carbon dioxide asphyxiation | Same as 2-week studies | Same as 2-week studies | | Necropsy Necropsies were performed on all animals. Organs weighed were heart, right kidney, liver, lung, right testis, and thymus. | Necropsies were performed on all core study
animals. Organs weighed were heart, right
kidney, liver, lung, right testis, and thymus. | Necropsies were performed on all animals. | | Clinical Pathology None | Blood was collected from the retroorbital sinus of clinical pathology study rats on days 3 and 23 and from core study rats at the end of the study for hematology and clinical chemistry; blood was collected from the supraorbital sinus of mice at the end of the study for hematology. **Hematology** automated and manual hematocrit; hemoglobin concentration; erythrocyte, reticulocyte, and platelet counts; erythrocyte and platelet morphology; mean cell volume; mean cell hemoglobin; mean cell hemoglobin concentration; and leukocyte count and differentials **Clinical chemistry** urea nitrogen, creatinine, total protein, albumin, globulin, alanine aminotransferase, alkaline phosphatase, creatine kinase, sorbitol dehydrogenase, and total bile acids | None | TABLE 2 Experimental Design and Materials and Methods in the Inhalation Studies of Divinylbenzene-HP 2-Week Studies 3-Month Studies 2-Year Studies #### Histopathology Histopathology was performed on 0 and 400 ppm animals. In addition to gross lesions and tissue masses, the following tissues were examined: kidney, liver, lung, and nose. These tissues were examined to a no-effect level in the remaining groups. Complete histopathology was performed on 0 and 400 ppm rats and 0, 100, and 200 ppm mice. In addition to gross lesions and tissue masses, the following tissues were examined: adrenal gland, bone, brain, clitoral gland, esophagus, eye, gallbladder (mice only), heart and aorta, large intestine (cecum, colon, rectum), small intestine (duodenum, jejunum, ileum), kidney, larynx, liver, lung and mainstem bronchi, lymph nodes (bronchial, mandibular, mediastinal, mesenteric), mammary gland, thigh muscle, nose, ovary, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, seminal vesicle, skin, spleen, stomach (forestomach and glandular), testis with epididymis and seminal vesicles, thymus, thyroid gland, trachea, urinary bladder, and uterus. The lung and nose were examined in all remaining groups of rats, and other tissues in rats and mice were examined to a no-effect level. Complete histopathology was performed on all rats and mice. In addition to gross lesions and tissue masses, the following tissues were examined: adrenal gland, bone, brain, clitoral gland, esophagus, eye, gallbladder (mice only), harderian gland, heart and aorta, large intestine (cecum, colon, rectum), small intestine (duodenum, jejunum, ileum), kidney, larynx, liver, lung and mainstem bronchi, lymph nodes (bronchial, mandibular, mediastinal, mesenteric), mammary gland, thigh muscle, nose, ovary, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, seminal vesicle, skin, spleen, stomach (forestomach and glandular), testis with epididymis and seminal vesicles, thymus, thyroid gland, trachea, urinary bladder, and uterus # **Sperm Motility and Vaginal Cytology None** At the end of the studies, sperm samples were collected from male rats in the 0, 100, 200, and 400 ppm groups and from male mice in the 0, 25, 50, and 100 ppm groups for sperm motility evaluations. The following parameters were evaluated: spermatid heads per testis and per gram testis, spermatid counts, and epididymal spermatozoal motility and concentration. The left cauda, left epididymis, and left testis were weighed. Vaginal samples were collected for up to 12 days during the last 2 weeks of the study from female rats in the 0, 100, 200, and 400 ppm groups and from female mice in the 0, 25, 50, and 100 ppm groups for vaginal cytology evaluations. The percentage of time spent in the various estrous cycle stages and estrous cycle length were evaluated. None #### STATISTICAL METHODS # **Survival Analyses** The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals found dead of other than natural causes or missing were censored from the survival analyses; animals dying from natural causes were not censored. Statistical analyses for possible concentration-related effects on survival used Cox's (1972) method for testing two groups for equality and Tarone's (1975) life table test to identify dose-related trends. All reported P values for the survival analyses are two sided. #### **Calculation of Incidence** The incidences of neoplasms or nonneoplastic lesions are presented in Tables A1, A5, B1, B5, C1, C5, D1, and D5 as the numbers of animals bearing such lesions at a specific anatomic site and the numbers of animals with that site examined microscopically. For calculation of statistical significance, the incidences of most neoplasms (Tables A3, B3, C3, and D3) and all nonneoplastic lesions are given as the numbers of animals affected at each site examined microscopically. However, when macroscopic examination was required to detect neoplasms in certain tissues (e.g., harderian gland, intestine, mammary gland, and skin) before microscopic evaluation, or when neoplasms had multiple potential sites of occurrence (e.g., leukemia or lymphoma), the denominators consist of the number of animals on which a necropsy was performed. Tables A3, B3, C3, and D3 also give the survival-adjusted neoplasm rate for each group and each site-specific neoplasm. This survival-adjusted rate (based on the Poly-3 method described below) accounts for differential mortality by assigning a reduced risk of neoplasm, proportional to the third power of the fraction of time on study, only to site-specific, lesion-free animals that do not reach terminal sacrifice. # **Analysis of Neoplasm and Nonneoplastic Lesion Incidences** The Poly-k test (Bailer and Portier, 1988; Portier and Bailer, 1989; Piegorsch and Bailer, 1997) was used to assess neoplasm and nonneoplastic lesion prevalence. This test is a survival-adjusted quantal-response procedure that modifies the Cochran-Armitage linear trend test to take survival differences into account. More specifically, this method modifies the denominator in the quantal estimate of lesion incidence to approximate more closely the total number of animal years at risk. For analysis of a given site, each animal is assigned a risk weight. This value is one if the animal had a lesion at that site or if it survived until terminal sacrifice; if the animal died prior to terminal sacrifice and did not have a lesion at that site, its risk weight is the fraction of the entire study time that it survived, raised to the kth power. This method yields a lesion prevalence rate that depends only upon the choice of a shape parameter for a Weibull hazard function describing cumulative lesion incidence over time (Bailer and Portier, 1988). Unless otherwise specified, a value of k=3 was used in the analysis of site-specific lesions. This value was recommended by Bailer and Portier (1988) following an evaluation of neoplasm onset time distributions for a variety of site-specific neoplasms in control F344 rats and B6C3F₁ mice (Portier *et al.*, 1986). Bailer and Portier (1988) showed that the Poly-3 test gave valid results if the true value of k was anywhere in the range from 1 to 5. A further advantage of the Poly-3 method is that it does not require lesion lethality assumptions. Variation introduced by the use of risk weights, which reflect differential mortality, was accommodated by adjusting the variance of the Poly-3 statistic as recommended by Bieler and Williams (1993). Tests of significance included pairwise comparisons of each exposed group with controls and a test for an overall exposure-related trend. Continuity-corrected Poly-3 tests were used in the analysis of lesion incidence, and reported P values are one sided. The significance of lower incidences or decreasing trends in lesions is represented as 1–P with the letter N added (e.g., P=0.99 is presented as P=0.01N). ### **Analysis of Continuous Variables** Two approaches were employed to assess the significance of pairwise comparisons between exposed and control groups in the analysis of continuous variables. Organ and body weight data, which historically have approximately normal distributions, were analyzed with the parametric multiple comparison procedures of Dunnett (1955) and Williams (1971, 1972). Hematology, clinical chemistry, spermatid, and epididymal spermatozoal data, which have typically skewed distributions, were analyzed using the nonparametric multiple comparison methods of Shirley (1977) (as modified by Williams, 1986) and Dunn (1964). Jonckheere's test (1954) was used to assess the significance of the dose-related trends and to determine whether a trend-sensitive test (Williams' or Shirley's test) was more appropriate for pairwise comparisons than a test that does not assume a monotonic dose-related trend (Dunnett's or Dunn's test). Prior to statistical analysis, extreme values identified by the outlier test of Dixon and Massey (1957) were examined by NTP personnel, and implausible values were eliminated from the analysis. Average severity values were analyzed for significance with the Mann-Whitney U test (Hollander and Wolfe, 1973). Because vaginal cytology data are proportions (the proportion of the observation period that an animal was in a given estrous stage), an arcsine transformation was used to bring
the data into closer conformance with a normality assumption. Treatment effects were investigated by applying a multivariate analysis of variance (Morrison, 1976) to the transformed data to test for simultaneous equality of measurements across exposure concentrations. #### **Historical Control Data** The concurrent control group represents the most valid comparison to the treated groups and is the only control group analyzed statistically in NTP bioassays. However, historical control data are often helpful in interpreting potential treatment-related effects, particularly for uncommon or rare neoplasm types. For meaningful comparisons, the conditions for studies in the historical database must be generally similar. One significant factor affecting the background incidence of neoplasms at a variety of sites is diet. In 1995, the NTP incorporated a new diet (NTP-2000) that contains less protein and more fiber and fat than the NIH-07 diet previously used in toxicity and carcinogenicity studies (Rao, 1996, 1997). The current NTP historical database contains all studies that use the NTP-2000 diet with histopathology findings completed up to the present. A second potential source of variability is route of administration. In general, the historical database for a given study will include studies using the same route of administration, and the overall incidences of neoplasms for all routes of administration are included for comparison, including the present study. # **QUALITY ASSURANCE METHODS** The 3-month and 2-year studies were conducted in compliance with Food and Drug Administration Good Laboratory Practice Regulations (21 CFR, Part 58). In addition, as records from the 2-year studies were submitted to the NTP Archives, these studies were audited retrospectively by an independent quality assurance contractor. Separate audits covered completeness and accuracy of the pathology data, pathology specimens, final pathology tables, and a draft of this NTP Technical Report. Audit procedures and findings are presented in the reports and are on file at NIEHS. The audit findings were reviewed and assessed by NTP staff, and all comments were resolved or otherwise addressed during the preparation of this Technical Report. #### **GENETIC TOXICOLOGY** The genetic toxicity of divinylbenzene was assessed by testing the ability of the chemical to induce mutations in various strains of Salmonella typhimurium and increases in the frequency of micronucleated erythrocytes in mouse peripheral blood. The protocols for these studies and the results are given in Appendix E. The genetic toxicity studies have evolved from an earlier effort by the NTP to develop a comprehensive database permitting a critical anticipation of a chemical's carcinogenicity in experimental animals based on numerous considerations, including the molecular structure of the chemical and its observed effects in short-term in vitro and in vivo genetic toxicity tests (structure-activity relationships). The short-term tests were originally developed to clarify proposed mechanisms of chemical-induced DNA damage based on the relationship between electrophilicity and mutagenicity (Miller and Miller, 1977) and the somatic mutation theory of cancer (Straus, 1981; Crawford, 1985). However, it should be noted that not all cancers arise through genotoxic mechanisms. DNA reactivity combined with Salmonella mutagenicity is highly correlated with induction of carcinogenicity in multiple species/sexes of rodents and at multiple tissue sites (Ashby and Tennant, 1991). A positive response in the Salmonella test was shown to be the most predictive in vitro indicator for rodent carcinogenicity (89% of the Salmonella mutagens are rodent carcinogens) (Tennant et al., 1987; Zeiger et al., 1990). Additionally, no battery of tests that included the Salmonella test improved the predictivity of the Salmonella test alone. However, these other tests can provide useful information on the types of DNA and chromosomal damage induced by the chemical under investigation. The predictivity for carcinogenicity of a positive response in acute *in vivo* bone marrow chromosome aberration or micronucleus tests appears to be less than that in the *Salmonella* test (Shelby *et al.*, 1993; Shelby and Witt, 1995). However, clearly positive results in long-term peripheral blood micronucleus tests have high predictivity for rodent carcinogenicity (Witt *et al.*, 2000); negative results in this assay do not correlate well with either negative or positive results in rodent carcinogenicity studies. Because of the theoretical and observed associations between induced genetic damage and adverse effects in somatic and germ cells, the determination of *in vivo* genetic effects is important to the overall understanding of the risks associated with exposure to a particular chemical. Most organic chemicals that are identified by the International Agency for Research on Cancer as human carcinogens, other than hormones, are genotoxic. The vast majority of these are detected by both the *Salmonella* assay and rodent bone marrow cytogenetics tests (Shelby, 1988; Shelby and Zeiger, 1990). # **RESULTS** # **R**ATS # 2-WEEK STUDY All rats survived to the end of the study (Table 3). Final mean body weights and body weight gains of 400 ppm rats were significantly less than those of the chamber controls, as were body weight gains of 100 ppm males and 200 ppm males and females. A clear serous nasal/eye discharge was observed in groups of rats exposed to 100 ppm or greater. Lethargy was observed in 400 ppm males on the first day of exposure. TABLE 3 Survival and Body Weights of Rats in the 2-Week Inhalation Study of Divinylbenzene-HP | | | Mea | n Body Weight | b (g) | Final Weight | |---------------------|-----------------------|------------|---------------|--------------|--------------------------| | Concentration (ppm) | Survival ^a | Initial | Final | Change | Relative to Controls (%) | | Male | | | | | | | 0 | 5/5 | 86 ± 3 | 151 ± 5 | 65 ± 4 | | | 25 | 5/5 | 84 ± 5 | 152 ± 6 | 68 ± 2 | 100 | | 50 | 5/5 | 86 ± 5 | 155 ± 6 | 69 ± 3 | 103 | | 100 | 5/5 | 83 ± 3 | 138 ± 2 | $55 \pm 3*$ | 91 | | 200 | 5/5 | 83 ± 3 | 142 ± 5 | $58 \pm 2*$ | 94 | | 400 | 5/5 | 84 ± 4 | 135 ± 5* | 52 ± 2** | 90 | | Female | | | | | | | 0 | 5/5 | 70 ± 2 | 112 ± 2 | 42 ± 1 | | | 25 | 5/5 | 71 ± 2 | 115 ± 2 | 44 ± 2 | 103 | | 50 | 5/5 | 69 ± 2 | 112 ± 3 | 43 ± 2 | 100 | | 100 | 5/5 | 71 ± 2 | 111 ± 2 | 40 ± 1 | 99 | | 200 | 5/5 | 70 ± 2 | 106 ± 2 | $36 \pm 1*$ | 95 | | 400 | 5/5 | 70 ± 2 | $104 \pm 2*$ | $34 \pm 1**$ | 92 | ^{*} Significantly different (P≤0.05) from the chamber control group by Williams' test ^{**} P≤0.01 Number of animals surviving at 2 weeks/number initially in group Weights and weight changes are given as mean \pm standard error. Relative kidney weights of 50 ppm or greater males and relative liver weights of 200 and 400 ppm males were significantly greater than those of the chamber controls (Table G1). In addition, liver, kidney, and lung weights of exposed groups of female rats were generally greater than those of the chamber controls. The only histologic change observed was minimal or mild rhinitis in 400 ppm rats of both sexes. Rhinitis was present in Section 1, the most cranial section of the nose, taken just caudal to the caudal aspect of the upper incisor teeth. Inflammatory cell infiltrates, composed of lymphocytes and polymorphonuclear leukocytes, were largely within the epithelium and subjacent connective tissue. To a lesser extent, polymorphonuclear leukocytes formed small aggregates on the epithelial surface. *Exposure Concentration Selection Rationale:* Because there were no effects of divinylbenzene-HP on survival of rats in the 2-week study, and final body weights were within 90% of the control groups, exposure concentrations selected for the 3-month inhalation study in rats were 0, 25, 50, 100, 200, and 400 ppm. # 3-Month Study All rats survived to the end of the study (Table 4). The final mean body weight of 400 ppm males and mean body weight gains of males exposed to 200 or 400 ppm were significantly less than those of the chamber controls. The mean body weight gain of 50 ppm females was significantly greater than that of the chamber controls. Nasal/eye discharge was occasionally noted in groups exposed to 50 ppm or greater. The hematology and clinical chemistry data for rats in the 3-month study are listed in Table F1. There were changes in the leukon that, in general, would be consistent with a physiological stress/steroid-induced type response in exposed male and female rats. The leukon alterations were, in general, characterized by decreases in leukocyte and lymphocyte counts. These changes were mild (~ 40% or less decrease) and occurred in 400 ppm TABLE 4 Survival and Body Weights of Rats in the 3-Month Inhalation Study of Divinylbenzene-HP | | | Mea | n Body Weight | ⁵ (g) | Final Weight | |---------------------|-----------------------|------------|---------------|------------------|--------------------------| | Concentration (ppm) | Survival ^a | Initial | Final | Change | Relative to Controls (%) | | Male | | | | | | | 0 | 10/10 | 77 ± 5 | 302 ± 4 | 225 ± 6 | | | 25 | 10/10 | 79 ± 4 | 315 ± 7 | 236 ± 7 | 104 | | 50 | 10/10 | 79 ± 5 | 306 ± 4 | 227 ± 4 | 101 | | 100 | 10/10 | 80 ± 6 | 300 ± 8 | 220 ± 5 | 99 | | 200 | 10/10 | 83 ± 4 | 289 ± 9 | $207 \pm 8*$ | 96 | | 400 | 10/10 | 77 ± 5 | 273 ± 5** | 196 ± 6** | 90 | | Female | | | | | | | 0 | 10/10 | 84 ± 4 | 182 ± 3 | 98 ± 3 | | | 25 | 10/10 | 74 ± 4 | 185 ± 4 | 110 ± 3 | 101 | | 50 | 10/10 | 81 ± 3 | 196 ± 4 | $114 \pm 3**$ | 107 | | 100 | 10/10 | 79 ± 4 | 183 ± 3 | 104 ± 4 | 101 | | 200 | 10/10 | 80 ± 4 | 177 ± 5 | 97 ± 3 | 97 | | 400 | 10/10 | $80
\pm 3$ | 179 ± 4 | 98 ± 4 | 98 | ^{*} Significantly different ($P \le 0.05$) from the chamber control group by Williams' or Dunnett's test a Number of animals surviving at 3 months/number initially in group b Weights and weight changes are given as mean ± standard error. males and females on days 3 and 23 and in females exposed to 50, 100, or 200 ppm on day 23. These alterations were transient, however, and, by week 14, there were no differences in the leukon between exposed and control animals. At day 3, there were small (< 10%) increases in erythrocyte counts in 200 and 400 ppm males and 100 ppm or greater females; a small (< 10%) increase in hematocrit values also occurred in 400 ppm males. These were transient findings that generally disappeared by day 23. Blood urea nitrogen concentrations were also transiently increased in males and female rats exposed to 100 ppm or greater; the increases ameliorated with time and were gone by week 14. While there were no changes in albumin or total protein concentrations, it is possible that the transient increase in the erythron and urea nitrogen concentrations was related to dehydration. Other scattered changes in the hematological and clinical chemistry variables occurred but were not considered toxicologically relevant. Relative kidney and liver weights of all exposed groups of males and of 400 ppm females were greater than those of chamber controls (Table G2). In addition, the relative weights of the heart and testis were significantly increased in 200 and 400 ppm males. There were no corresponding histologic changes to account for the organ weight changes. There were no significant differences between exposed and chamber control groups in reproductive tissue evaluations in males or vaginal cytology parameters in females (Tables H1 and H2). Although no gross lesions were observed that could be attributed to exposure to divinylbenzene-HP, microscopic lesions were observed in the nose of male and female rats. Incidences of predominately minimal degeneration of the olfactory epithelium were significantly increased in 200 and 400 ppm rats (Table 5). In addition, the incidences of minimal to mild basal cell hyperplasia of the olfactory epithelium were significantly increased in rats exposed to 100 ppm or greater. The severity of these lesions increased with increasing exposure concentration. Olfactory epithelial degeneration was characterized by disorganization and decreased thickness of olfactory epithelium with loss of neuroepithelial cells. Basal cell hyperplasia of olfactory epithelium was characterized by proliferation of basal cells with or without distortion of overlying neuroepithelial cells. Exposure Concentration Selection Rationale: Because there were no treatment-related effects of divinylbenzene-HP on survival and minimal effects of exposure on body weights, organ weights, and incidences of lesions in the 3-month study, exposure concentrations selected for the 2-year inhalation study in rats were 0, 100, 200, and 400 ppm. TABLE 5 Incidences of Selected Nasal Lesions in Rats in the 3-Month Inhalation Study of Divinylbenzene-HP | | Chamber Control | 25 ppm | 50 ppm | 100 ppm | 200 ppm | 400 ppm | |---|-----------------|--------|--------|-------------|-----------|-----------| | Male | | | | | | | | Number Examined Microscopics
Olfactory Epithelium, | ally 10 | 0 | 10 | 10 | 10 | 10 | | Degeneration ^a Olfactory Epithelium, | 0 | | 0 | $(1.0)^{b}$ | 7**(1.0) | 8**(1.1) | | Basal Cell, Hyperplasia | 0 | | 0 | 9**(1.1) | 10**(1.6) | 10**(1.9) | | Female | | | | | | | | Number Examined Microscopics
Olfactory Epithelium, | ally 10 | 0 | 10 | 10 | 10 | 10 | | Degeneration Olfactory Epithelium, | 0 | | 0 | 2 (1.0) | 6**(1.3) | 9**(1.3) | | Basal Cell, Hyperplasia | 0 | | 0 | 5* (1.0) | 9**(1.2) | 10**(1.8) | ^{*} Significantly different ($P \le 0.05$) from the chamber control group by the Fisher exact test ^{**}P≤0.01 a Number of animals with lesion Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked # 2-YEAR STUDY #### Survival Estimates of 2-year survival probabilities for male and female rats are shown in Table 6 and in the Kaplan-Meier survival curves (Figure 3). Survival of 400 ppm females was significantly less than that of the chamber control group. Survival of all exposed groups of males was similar to that of the chamber control group. TABLE 6 Survival of Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |---|------------------------|----------|-----------------|----------| | Male | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Moribund | 15 | 9 | 12 | 13 | | Natural deaths | 4 | 6 | 6 | 5 | | Animals surviving to study termination | 31 | 35 | 32 ^a | 32 | | Percent probability of survival at end of study | 62 | 70 | 64 | 64 | | Mean survival (days) | 686 | 694 | 687 | 700 | | Survival analysis ^d | P=1.000N | P=0.435N | P=0.907N | P=0.853N | | Female | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Accidental death | 0 | 1 | 0 | 0 | | Moribund | 10 | 16 | 14 | 26 | | Natural deaths | 7 | 3 | 3 | 2 | | Animals surviving to study termination | 33 | 30 | 33 | 22 | | Percent probability of survival at end of study | 66 | 61 | 66 | 44 | | Mean survival (days) | 679 | 690 | 691 | 651 | | Survival analysis | P=0.019 | P=0.901 | P=1.000N | P=0.049 | a Includes one animal that died during the last week of the study b Kaplan-Meier determinations Mean of all deaths (uncensored, censored, and terminal sacrifice) The result of the life table trend test (Tarone, 1975) is in the chamber control column, and the results of the life table pairwise comparisons (Cox, 1972) with the chamber controls are in the exposed group columns. A negative trend or lower mortality in an exposed group is indicated by **N**. Censored from survival analyses FIGURE 3 Kaplan-Meier Survival Curves for Male and Female Rats Exposed to Divinylbenzene-HP by Inhalation for 2 Years # **Body Weights and Clinical Findings** Mean body weights of 400 ppm males were less than those of the chamber controls from week 37 to the end of the study; mean body weights of 400 ppm females were less than those of the chamber controls during the second year of the study (Figure 4, Tables 7 and 8). An increased incidence of lethargy in 400 ppm males occurred late in the study. Primarily during the second year of the study, seizures were observed sporadically in a few male and female rats from each exposure group, including chamber controls. More female rats were affected than males (males: 1/50, 4/50, 1/50, 2/50; females: 1/50, 2/50, 6/50, 5/50) and the first onset was earlier in females (week 41) than in males (week 59). Most seizures were mild, characterized by an abnormal hunched posture and chewing movements sometimes accompanied by clonic spasms of alternate muscle contraction and relaxation, and lasted approximately 30 seconds with a rapid recovery. Uncommon seizures of greater severity produced more pronounced jerking motions lasting up to 60 seconds with a recovery time of two minutes. Most seizure-prone animals had multiple episodes (2 to 8), and neither the incidences nor the number of episodes per rat appeared related to exposure concentration. Similar, sporadic seizures have been observed in F344/N rats in six other NTP inhalation or dermal exposure studies at three different laboratories. In all these studies the single common factor is that the animals were housed individually. No such episodes have been observed in concurrent dosed feed, gavage, or drinking water studies in which rats were group housed. In the individually housed animals, most seizures were observed early in the day, when technical and maintenance activities were commencing following the animals' dark cycle period. No deaths were associated with seizures, and there were no correlations with body weight, feed consumption or composition, or histopathological lesions in this or other studies. Thus these transient events were not considered to have affected the toxicologic or carcinogenicity evaluations of this study. FIGURE 4 Growth Curves for Male and Female Rats Exposed to Divinylbenzene-HP by Inhalation for 2 Years TABLE 7 Mean Body Weights and Survival of Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | Weeks | Chan | nber Control | | 100 ppm | | | 200 ppm | | | 400 ppm | | |-------------|---------|---------------------|---------|---------|---------------------|---------|---------|---------------------|---------|-----------|---------------------| | on
Study | Av. Wt. | No. of
Survivors | Av. Wt. | , | No. of
Survivors | Av. Wt. | , | No. of
Survivors | Av. Wt. | Wt. (% of | No. of
Survivors | | | 02 | 50 | 0.1 | | | 0.1 | 00 | | 0.1 | | | | 1 | 93 | 50 | 91 | 98 | 50 | 91 | 98 | 50 | 91 | 98 | 50 | | 5 | 198 | 50 | 192 | 97 | 50 | 192 | 97 | 50 | 182 | 92 | 50 | | 9 | 257 | 50 | 254 | 99 | 50 | 261 | 102 | 50 | 247 | 96 | 50 | | 13 | 303 | 50 | 301 | 99 | 50 | 311 | 103 | 50 | 294 | 97 | 50 | | 17 | 340 | 50 | 337 | 99 | 49 | 346 | 102 | 50 | 327 | 96 | 50 | | 21 | 365 | 50 | 360 | 99 | 49 | 371 | 102 | 49 | 348 | 95 | 50 | | 25 | 387 | 50 | 380 | 98 | 49 | 394 | 102 | 49 | 370 | 96 | 50 | | 29 | 406 | 50 | 397 | 98 | 49 | 412 | 101 | 49 | 387 | 95 | 50 | | 33 | 418 | 50 | 412 | 99 | 49 | 427 | 102 | 49 | 400 | 96 | 50 | | 37 | 436 | 50 | 424 | 97 | 49 | 441 | 101 | 49 | 413 | 95 | 50 | | 41 | 447 | 50 | 435 | 97 | 49 | 453 | 101 | 49 | 420 | 94 | 50 | | 45 | 455 | 50 | 443 | 97 | 49 | 461 | 101 | 49 | 428 | 94 | 50 | | 49 | 462 | 50 | 449 | 97 | 49 | 468 | 101 | 49 | 435 | 94 | 50 | | 53 | 473 | 49 | 458 | 97 | 49 | 480 | 101 | 49 | 447 | 94 | 50 | | 57 | 482 | 49 | 464 | 96 | 49 | 486 | 101 | 49 | 455 | 94 | 50 | | 61 | 490 | 49 | 473 | 97 | 48 | 494 |
101 | 49 | 463 | 95 | 50 | | 65 | 496 | 49 | 479 | 97 | 48 | 500 | 101 | 49 | 468 | 94 | 50 | | 69 | 500 | 49 | 484 | 97 | 48 | 506 | 101 | 48 | 467 | 94 | 50 | | 73 | 501 | 49 | 486 | 97 | 48 | 507 | 101 | 48 | 469 | 94 | 50 | | 77 | 508 | 48 | 489 | 96 | 48 | 511 | 101 | 48 | 473 | 93 | 49 | | 81 | 513 | 45 | 496 | 97 | 48 | 517 | 101 | 47 | 472 | 92 | 49 | | 85 | 512 | 45 | 504 | 99 | 46 | 521 | 102 | 44 | 475 | 93 | 46 | | 89 | 520 | 41 | 508 | 98 | 45 | 520 | 100 | 44 | 477 | 92 | 44 | | 92 | 515 | 40 | 508 | 99 | 45 | 524 | 102 | 42 | 477 | 93 | 43 | | 94 | 515 | 39 | 508 | 99 | 45 | 522 | 101 | 42 | 480 | 93 | 42 | | 96 | 508 | 39 | 510 | 100 | 42 | 521 | 103 | 40 | 481 | 95 | 42 | | 98 | 512 | 36 | 510 | 100 | 42 | 522 | 102 | 39 | 479 | 94 | 41 | | 100 | 510 | 35 | 517 | 101 | 41 | 515 | 101 | 38 | 476 | 93 | 37 | | 102 | 514 | 33 | 516 | 100 | 40 | 508 | 99 | 36 | 472 | 92 | 36 | | 104 | 503 | 33 | 520 | 103 | 37 | 495 | 98 | 35 | 469 | 93 | 34 | | 104 | 303 | 33 | 320 | 103 | 31 | 7/3 | 76 | 33 | 707 |)3 | 34 | | Mean for | weeks | | | | | | | | | | | | 1-13 | 213 | | 210 | 98 | | 214 | 100 | | 204 | 96 | | | 14-52 | 413 | | 404 | 98 | | 419 | 101 | | 392 | 95 | | | 53-104 | 504 | | 496 | 98 | | 509 | 101 | | 471 | 93 | | | | | | | | | | | | | | | TABLE 8 Mean Body Weights and Survival of Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | Weeks | Chamb | er Control | | 100 ppm | | | 200 ppm | | | 400 ppm | | |----------|---------|------------|---------|-----------|-----------|---------|-----------|-----------|---------|-----------|-----------| | on | Av. Wt. | No. of | Av. Wt. | Wt. (% of | No. of | Av. Wt. | Wt. (% of | No. of | Av. Wt. | Wt. (% of | No. of | | Study | (g) | Survivors | (g) | | Survivors | (g) | | Survivors | (g) | controls) | Survivors | | | | | | | | | | | | | | | 1 | 80 | 50 | 79 | 98 | 50 | 79 | 98 | 50 | 78 | 98 | 50 | | 5 | 139 | 50 | 139 | 100 | 50 | 135 | 97 | 50 | 132 | 96 | 50 | | 9 | 164 | 50 | 168 | 100 | 50 | 166 | 101 | 50 | 164 | 100 | 50 | | | | | | | | | | | | | | | 13 | 181 | 50 | 186 | 102 | 50 | 184 | 101 | 50 | 183 | 101 | 50 | | 17 | 190 | 50 | 199 | 104 | 50 | 194 | 102 | 50 | 191 | 101 | 50 | | 21 | 200 | 50 | 203 | 101 | 50 | 202 | 101 | 50 | 200 | 100 | 50 | | 25 | 210 | 50 | 218 | 104 | 50 | 212 | 101 | 50 | 209 | 100 | 49 | | 29 | 219 | 50 | 225 | 103 | 50 | 220 | 100 | 50 | 214 | 98 | 49 | | 33 | 226 | 50 | 232 | 103 | 50 | 226 | 100 | 50 | 221 | 98 | 49 | | 37 | 235 | 50 | 242 | 103 | 50 | 235 | 100 | 50 | 229 | 98 | 49 | | 41 | 242 | 50 | 250 | 103 | 50 | 242 | 100 | 50 | 234 | 97 | 49 | | 45 | 249 | 50 | 258 | 104 | 50 | 249 | 100 | 50 | 240 | 97 | 49 | | 49 | 258 | 50 | 267 | 104 | 50 | 255 | 99 | 50 | 246 | 95 | 49 | | 53 | 273 | 50 | 279 | 102 | 50 | 265 | 97 | 50 | 256 | 94 | 49 | | 57 | 283 | 50 | 288 | 102 | 49 | 277 | 98 | 49 | 265 | 94 | 49 | | 61 | 295 | 50 | 300 | 102 | 49 | 290 | 98 | 49 | 278 | 94 | 49 | | 65 | 304 | 47 | 307 | 101 | 49 | 296 | 97 | 49 | 283 | 93 | 49 | | 69 | 306 | 46 | 312 | 102 | 49 | 300 | 98 | 49 | 289 | 94 | 49 | | 73 | 313 | 44 | 317 | 101 | 48 | 309 | 99 | 45 | 295 | 94 | 49 | | 77 | 318 | 43 | 323 | 102 | 47 | 314 | 99 | 45 | 296 | 93 | 45 | | 81 | 331 | 41 | 331 | 100 | 45 | 319 | 96 | 45 | 299 | 91 | 41 | | 85 | 339 | 41 | 338 | 100 | 44 | 327 | 96 | 43 | 303 | 90 | 38 | | 89 | 340 | 41 | 340 | 100 | 44 | 329 | 90
97 | 42 | 311 | 91 | 34 | | 92 | 344 | 39 | 344 | 100 | 43 | 336 | 98 | 42 | 317 | 92 | 30 | | 94 | 344 | 39 | 345 | 100 | 43 | 336 | 98 | 42 | 317 | 91 | 30 | | | | | | | | | | | | | | | 96 | 344 | 39 | 347 | 101 | 41 | 338 | 98 | 41 | 318 | 93 | 26 | | 98 | 345 | 39 | 348 | 101 | 38 | 340 | 99 | 39 | 321 | 93 | 26 | | 100 | 347 | 38 | 340 | 98 | 37 | 338 | 98 | 39 | 319 | 92 | 25 | | 102 | 348 | 36 | 341 | 98 | 34 | 334 | 96 | 38 | 317 | 91 | 25 | | 104 | 355 | 33 | 340 | 96 | 31 | 336 | 95 | 35 | 317 | 89 | 22 | | Mean for | weeks | | | | | | | | | | | | 1-13 | 141 | | 143 | 101 | | 141 | 99 | | 139 | 99 | | | 14-52 | 225 | | 233 | 103 | | 226 | 100 | | 220 | 98 | | | 53-104 | 325 | | 326 | 100 | | 317 | 97 | | 300 | 92 | | | | | | | | | | | | | | | ## Pathology and Statistical Analyses This section describes the statistically significant or biologically noteworthy changes in the incidences of mononuclear cell leukemia and neoplasms and/or nonneoplastic lesions of the kidney, brain, skin, thyroid gland, nose, and lung. Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary neoplasms that occurred with an incidence of at least 5% in at least one animal group, and historical incidences for the the neoplasms mentioned in this section are presented in Appendix A for male rats and Appendix B for female rats. *Kidney:* In the standard evaluation of the kidney, two 400 ppm males had renal tubule carcinoma; although the higher incidence in this group was marginal and not statistically significant, it exceeded the historical incidence in chamber control male rats (Tables 9, A1, and A4). Marked cortical renal tubule hyperplasia occurred in an additional two 400 ppm males (Tables 9 and A5). In the kidney, renal tubule hyperplasia, adenoma, and carcinoma are thought to represent a continuum in the progression of proliferative lesions. In the standard evaluation, a single section of each kidney was examined microscopically. Because the marginally greater incidences of renal tubule carcinoma and the greater severity of renal tubule hyperplasia in the 400 ppm males indicated the possibility of a treatment-related carcinogenic effect, an extended evaluation of the kidney was performed in males. In the extended evaluation, renal tubule adenomas were identified in two 200 ppm and one 400 ppm males (Table 9). Additional incidences of renal tubule hyperplasia were also identified in the chamber control and exposed groups. No additional renal tubule carcinomas were identified. In the combined analyses, the incidences of renal tubule adenoma and adenoma or carcinoma (combined) were marginally, but not statistically, higher in 200 and 400 ppm males but exceeded the single section historical incidence for chamber controls (Tables 9, A3, and Aa). Renal tubule hyperplasia was characterized by single or multiple (adjacent) tubules lined by three or more layers of epithelium, partially or completely filling the lumen. There was little cellular atypia, and component cells ranged from smaller than normal to larger than normal epithelial cells. Renal tubule adenomas were well-circumscribed, discrete masses of epithelial cells that caused TABLE 9 Incidences of Neoplasms and Nonneoplastic Lesions of the Kidney in Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |--|------------------------|-----------|-----------|------------| | Number Examined Microscopically | 50 | 49 | 50 | 49 | | Single Sections (Standard Evaluation) | L. | | | | | Renal Tubule, Hyperplasia ^a | $(2.0)^{b}$ | 2 (1.0) | 0 | 2 (4.0) | | Nephropathy, Chronic | 37 (1.8) | 41 (1.5) | 41 (2.1) | 45* (1.8) | | Renal Tubule, Carcinoma ^c | 0 | 0 | 0 | 2 | | Step Sections (Extended Evaluation) | | | | | | Cortex, Renal Tubule, Hyperplasia | 2 (1.0) | 3 (1.0) | 5 (1.4) | 14** (1.7) | | corren, remar radure, rryperprasta | 2 (1.0) | 2 (1.0) | 5 (11.) | 1. (1.7) | | Renal Tubule, Adenoma | 0 | 0 | 2 | 1 | | Single and Step Sections (Combined) | | | | | | Cortex, Renal Tubule, Hyperplasia | 3 (1.3) | 5 (1.0) | 5 (1.4) | 16** (2.0) | | Renal Tubule, Adenoma | 0 | 0 | 2 | 1 | | Renal Tubule, Carcinoma | 0 | 0 | 0 | 2 | | Renal Tubule, Adenoma or Carcinoma | | | | | | Overall Rate ^d | 0/50 (0%) | 0/49 (0%) | 2/50(4%) | 3/49 (6%) | | Adjusted Rate | 0.0% | 0.0% | 4.5% | 6.8% | | Terminal Rate ^f | 0/31 (0%) | 0/35 (3%) | 1/32 (3%) | 1/32 (3%) | | First Incidence (days) | h | _ | 619 | 682 | | Poly-3 test ^g | P=0.027 | i | P=0.244 | P=0.123 | ^{*} Significantly different (P≤0.05) from the chamber control group by the Poly-3 test ^{**} P≤0.01 a Number of animals with lesion Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked Historical incidence for 2-year inhalation studies with chamber control groups (mean \pm standard deviation): $^{1/399 (0.3\% \}pm 0.7\%)$, range 0%-2% Number of animals with neoplasm per number of animals with kidney examined microscopically Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality Observed incidence at terminal kill Beneath the chamber control incidence is the P value associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the chamber controls and that exposed group. The Poly-3 test accounts for differential mortality in animals that do not reach terminal sacrifice. Not applicable; no neoplasms in animal group Value of statistic cannot be computed slight compression of surrounding parenchyma. Adenomas were mildly expansile, generally exceeding the diameter of five tubules and were composed of multiple layers or solid sheets of epithelial cells with loss of normal cellular orientation, and occasional microtubular formation. One of the renal tubule carcinomas was composed of mixed tubular and solid arrangements of a heterogeneous population of neoplastic cells with focal cystic areas and hemorrhage. The second carcinoma from the single sections, was solid, composed of sheets and cords of highly anaplastic cells, with evidence of capsular invasion and distant metastases. The incidences of mild chronic nephropathy were higher in all exposed groups of males and significantly increased in the 400 ppm group (Tables 9 and A5). Chronic nephropathy is an age-associated lesion, particularly common in males, characterized by a spectrum of lesions including glomerulosclerosis, thickening of glomerular
and tubular basement membranes proteinaceous tubular casts, tubular dilatation, degeneration and regeneration, interstitial fibrosis, and mononuclear cell infiltration. *Brain:* Malignant glial cell tumors occurred in three males in the 200 ppm group (two astrocytomas and one oligodendroglioma) and a single 200 ppm female (astrocytoma). A single male from the 100 ppm group had oligodendroglioma (Tables 10, A1, A3, and B1). The incidence in 200 ppm males exceeded the historical incidence of astrocytoma, glioma, or oligodendroglioma (combined) for chamber controls (Tables 10 and A4b). Although the incidences of these malignant glial cell neoplasms did not increase with increasing exposure concentration, these are rare tumors and association with exposure to divinylbenzene-HP could not be excluded. *Skin:* In 400 ppm males, the incidence of basal cell adenoma was marginally higher than chamber controls and exceeded historical control values for basal cell adenoma, basosquamous tumor benign, and trichoepithelioma (combined) (Tables 11, A1, and A3). Tumors were identified grossly as subcutaneous masses on the dorsal, ventral, or lateral aspect of the torso or on the tail. Histologically, basal cell adenomas were well-circumscribed masses composed predominantly of basal cells or a mixture of sebaceous and keratinizing squamous epithelium, often forming cysts. A trichoepithelioma was observed in a control male. Since the basal cell is the common TABLE 10 Incidences of Neoplasms of the Brain in Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | | |--|--|--|--|---|--| | Male | | | | | | | Number Examined Microscopically Astrocytoma Malignant ^{a,b} Oligodendroglioma Malignant ^c Oligodendroglioma or Astrocytoma ^b Overall Rate Adjusted Rate Terminal Rate First Incidence (days) Poly-3 test ^g | 49
0
0
0/49 (0%)
0.0%
0/30 (0%)
_h
P=0.614N | 50
0
1
1/50 (2%)
2.2%
0/35 (0%)
582
P=0.517 | 50
2
1
3/50 (6%)
6.8%
3/32 (9%)
729 (T)
P=0.126 | 50
0
0
0/50 (0%)
0.0%
0/32 (0%)
i | | | Female | | | | | | | Number Examined Microscopically
Astrocytoma Malignant | 50
0 | 50
0 | 50
1 | 50
0 | | ⁽T)Terminal sacrifice precursor of both basal cell adenoma and trichoepithelioma, these neoplasms can be combined for statistical analysis. The trichoepithelioma was composed of neoplastic basal cells with prominent hair follicle differentiation. The occurrence of a marginal increase in basal cell adenoma in 400 ppm males only, with no consistent site distribution, was considered unlikely to be related to exposure to divinylbenzene-HP (Table 11). Number of animals with neoplasm Historical incidence for 2-year inhalation studies with chamber control groups (mean ± standard deviation): 1/398 (0.3% ± 0.7%), range 0%-2% Historical incidence: 0/398 Number of animals with neoplasm per number of animals with brain examined microscopically Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality Observed incidence at terminal kill Beneath the chamber control incidence is the P value associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the chamber controls and that exposed group. The Poly-3 test accounts for differential mortality in animals that do not reach terminal sacrifice. A negative trend is indicated by N. Not applicable; no neoplasms in animal group Value of statistic cannot be computed Historical incidence: 0/397 TABLE 11 Incidences of Basal Cell Adenoma of the Skin in Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |-----------------------------------|------------------------|-----------|-----------|-----------| | Number of Animals Necropsied | 50 | 50 | 50 | 50 | | Trichoepithelioma ^{a,b} | 1 | 0 | 0 | 0 | | Basal Cell Adenoma ^b | | | | | | Overall Rate ^c . | 0/50 (0%) | 0/50 (0%) | 1/50 (2%) | 3/50 (6%) | | Adjusted Rate | 0.0% | 0.0% | 2.2% | 6.7% | | Terminal Rate | 0/31 (0%) | 0/35 (0%) | 0/32 (0%) | 3/32 (9%) | | First Incidence (days) | g (*,*) | _ ` ` | 578 | 729 (T) | | Poly-3 test | P=0.020 | h | P=0.507 | P=0.126 | | Trichoepithelioma or Basal Cell A | denoma ⁱ | | | | | Overall Rate | 1/50 (2%) | 0/50 (0%) | 1/50 (2%) | 3/50 (6%) | | Adjusted Rate | 2.3% | 0.0% | 2.2% | 6.7% | | Terminal Rate | 1/31 (3%) | 0/35 (0%) | 0/32 (0%) | 3/32 (9%) | | First Incidence (days) | 729 (T) | | 578 | 729 (T) | | Poly-3 test | P=0.097 | P=0.490N | P=0.753N | P=0.320 | T) Terminal sacrifice a Number of animals with neoplasm b Historical incidence for 2-year inhalation studies with chamber control groups (mean ± standard deviation): 1/399 (0.3% ± 0.7%), range 0%-2% ^c Number of animals with neoplasm per number of animals necropsied d Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality e Observed incidence at terminal kill f Beneath the chamber control incidence is the P value associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the chamber controls and that exposed group. The Poly-3 test accounts for differential mortality in animals that do not reach terminal sacrifice. g Not applicable; no neoplasms in animal group h Value of statistic cannot be computed i Historical incidence (includes basosquamous cell tumor benign): 2/399 (0.5% ± 0.9%), range 0%-2% Mononuclear Cell Leukemia: In females, there was a greater incidence of mononuclear cell leukemia in exposed groups when compared with the concurrent chamber controls. The incidence in all exposed groups was within the historical chamber control range. The concurrent chamber control incidence was below the mean historical control incidence and was at the lower end of the historical control range (Tables 12, B3, and B4). Mononuclear cell leukemia in females was therefore considered to be unrelated to treatment. In males from all exposed groups, the incidences of mononuclear cell leukemia were decreased and below the historical range for chamber controls (Tables 12 and A3). Decreases were significant at 100 and 400 ppm. Mononuclear cell leukemia is a tumor of large granular lymphocyte origin, which is unique to the rat, and is uncommon in strains other than the F344 rat (Stromberg *et al.*, 1983). In untreated F344 rats it occurs in aged animals at a variable rate in both sexes; although it tends to occur more commonly in males (Haseman *et al.*, 1998). Decreases in the incidence of mononuclear cell leukemia have been seen in both sexes with chemicals causing splenic toxicity (Elwell *et al.*, 1996). In this study decreases occurred only in males, there was no evidence of pathology in the spleen, and the biological significance of this decrease in males is therefore uncertain. Thyroid Gland: In females, C-cell adenoma occurred in all exposed groups (reaching statistical significance at 100 and 400 ppm), but not in chamber controls (Tables 13 and B3). C-cell carcinoma occurred in single animals in the chamber control, 100, and 200 ppm groups. Incidences of C-cell adenoma and adenoma or carcinoma (combined) were within the historical ranges for chamber controls. The incidence and severity of C-cell hyperplasia also decreased with increasing exposure concentration in females. Incidences of C-cell hyperplasia were generally greater in exposed males and significant at 200 ppm (Tables 13 and A3). However, the incidences of C-cell adenoma and adenoma or carcinoma (combined) were marginally higher in the 100 ppm group only and within the historical chamber control range. In the rat, thyroid gland C-cell hyperplasia, adenoma, and carcinoma represent a continuum of proliferative change. In both sexes, there was a lack of correlation between hyperplastic and TABLE 12 Incidences of Mononuclear Cell Leukemia in Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |-----------------------------|------------------------|-------------|-------------|-------------| | Male | | | | | | Mononuclear Cell Leukemia | | | | | | Overall Rate | 22/50 (44%) | 13/50 (26%) | 14/50 (28%) | 10/50 (20%) | | Adjusted Rated | 46.4% | 27.8% | 30.9% | 21.5% | | Terminal Rate | 9/31 (29%) | 6/35 (17%) | 9/32 (28%) | 4/32 (13%) | | First Incidence (days) | 355 | 569 | 544 | 569 | | Poly-3 test ^e | P=0.013N | P=0.047N | P=0.092N | P=0.008N | | Female | | | | | | Mononuclear Cell Leukemia f | | | | | | Overall Rate | 10/50 (20%) | 18/50 (36%) | 22/50 (44%) | 22/50 (44%) | | Adjusted Rate | 23.0% | 38.9% | 47.1% | 49.7% | | Terminal Rate | 6/33 (18%) | 8/30 (27%) | 12/33 (36%) | 5/22 (23%) | | First Incidence (days) | 477 | 542 | 481 | 516 | | Poly-3 test | P=0.008 | P=0.078 | P=0.013 | P=0.007 | a Historical incidence for 2-year inhalation studies with chamber control groups (mean ± standard deviation): 188/399 (47.1% ± 10.3%), range 32%- 66% Historical incidence: 136/399 (34.1% ± 11.9%), range 20%-52% neoplastic C-cell lesions. Incidence rates of C-cell adenoma and carcinoma lacked a clear dose response and were within historical control ranges; therefore, thyroid gland C-cell hyperplasia and neoplasia in male and female rats were considered not to be associated with exposure to divinylbenzene-HP. Number of animals with neoplasm per number of animals necropsied Poly-3
estimated neoplasm incidence after adjustment for intercurrent mortality Observed incidence at terminal kill Beneath the chamber control incidence is the P value associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the chamber controls and that exposed group. The Poly-3 test accounts for differential mortality in animals that do not reach terminal sacrifice. A negative trend or a lower incidence in an exposed group is indicated by N. TABLE 13 Incidences of Neoplasms and Nonneoplastic Lesions of the Thyroid Gland (C-Cell) in Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |--|---------------------------------|------------|-----------|-----------| | Male | | | | | | Number Examined Microscopically | 50 | 50 | 50 | 49 | | C-Cell Hyperplasia ^a | ² (2.5) ^b | 4 (3.0) | 9* (2.6) | 7 (2.4) | | C-Cell Adenoma ^c | 2 | 5 | 2 | 2 | | C-Cell Carcinoma | 1 | 0 | 0 | 1 | | C-Cell Adenoma or Carcinoma ^d | 3 | 5 | 2 | 3 | | Female | | | | | | Number Examined Microscopically | 50 | 50 | 50 | 50 | | C-Cell Hyperplasia | 5 (2.8) | 8 (2.0) | 6 (1.8) | 1 (1.0) | | C-Cell Adenoma ^e | | | | | | Overall Rate | 0/50 (0%) | 5/50 (10%) | 1/50 (2%) | 4/50 (8%) | | Adjusted Rateh | 0.0% | 11.2% | 2.3% | 10.4% | | Terminal Rate ^h | 0/33 (0%) | 3/30 (10%) | 1/33 (3%) | 2/22 (9%) | | First Incidence (days) | J ` ` ´ | 506 | 731 (T) | 563 | | Poly-3 test ¹ | P=0.134 | P=0.035 | P=0.507 | P=0.049 | | C-Cell Carcinoma | 1 | 1 | 1 | 0 | | C-Cell Adenoma or Carcinoma ^k | | | | | | Overall Rate | 1/50 (2%) | 6/50 (12%) | 2/50 (4%) | 4/50 (8%) | | Adjusted Rate | 2.4% | 13.4% | 4.6% | 10.4% | | Terminal Rate | 0/33 (0%) | 3/30 (10%) | 1/33 (3%) | 2/22 (9%) | | First Incidence (days) | 716 | 506 | 715 | 563 | | Poly-3 test | P=0.282 | P=0.064 | P=0.512 | P=0.150 | ^{*} Significantly different ($P \le 0.05$) from the chamber control group by the Poly-3 test ⁽T)Terminal sacrifice a Number of animals with lesion b Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked c Historical incidence for 2-year inhalation studies with chamber control groups (mean \pm standard deviation): 35/395 ($9.0\% \pm 6.5\%$), range 2%-20% ^d Historical incidence: 43/395 (11.0% \pm 6.7%), range 2%-22% ^e Historical incidence: 31/392 (8.0% ± 5.1%), range 0%-16% f Number of animals with neoplasm per number of animals with thyroid gland examined microscopically g Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality h Observed incidence at terminal kill i Beneath the chamber control incidence is the P value associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the chamber controls and that exposed group. The Poly-3 test accounts for differential mortality in animals that do not reach terminal sacrifice. j Not applicable; no neoplasms in animal group k Historical incidence: 44/392 (11.3% \pm 6.0%), range 2%-18% Nose: Adenoma of the respiratory epithelium occurred in one 400 ppm female (Tables 14 and B1). This lesion has not been observed in historical chamber control female rats (0/397), but occurs in a single female 1/1,454 (range 0% to 1%) in the wider historical control database (all routes of administration). In addition, whereas the nose was a target organ in this study, in other studies with similar nonneoplastic lesions, nasal adenomas were not observed. Review of published NTP technical reports between 1990 and 2004 showed that of 17 chronic inhalation studies in F344/N rats in which there were nonneoplastic nasal changes, 15 had no nasal adenomas. In the two studies in which nasal adenomas were seen, the chemicals were clear nasal carcinogens or occurred in multiple animals and were not the only nasal tumor seen (furfuryl alcohol; NTP, 1999; naphthalene: NTP, 2000). The occurrence of a single nasal tumor in the high dose group of one sex was, therefore, insufficient to be considered evidence of a neoplastic response to divinylbenzene-HP exposure. There was an increased incidence of minimal to mild degeneration and basal cell hyperplasia of the olfactory epithelium in all exposed groups of rats, and the incidences increased with increasing exposure concentration (Tables 14, A5, and B5). The incidences of Bowman's gland dilatation were increased in all exposed groups of rats. The incidences of respiratory epithelial goblet cell hyperplasia in male rats were increased in the 200 and 400 ppm groups, and higher in the 100 ppm group. The mean severity of this lesion, however, did not increase with exposure concentration. Slightly higher incidences of minimal to mild suppurative inflammation occurred in the nasal epithelium and lamina propria of both sexes and was statistically significant in 200 ppm males. Microscopically, olfactory epithelial degeneration consisted of a combination of focal to multifocal disorganization and atrophy, characterized by loss of sensory cells with a decrease in the number of layers of olfactory neuroepithelium. There were occasional small accumulations of necrotic debris, usually involving the medial septum and dorsal meatus of level III, and to a lesser extent level II. Olfactory epithelial basal cell hyperplasia was characterized by focal to extensive proliferation of basal cells and graded mild to moderate depending on the extent of replacement of normal epithelial architecture and depth of extension into the lamina propria by basal cells (Plates 1 and 2). Dilatation of Bowman's glands (up to three times the normal diameter) was most apparent in the medial septum of level II. Glands contained small amounts of eosinophilic material and were lined by flattened, TABLE 14 Incidences of Selected Neoplasms and Nonneoplastic Lesions of the Nose and Lung in Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chambe | er Control | 100 | ppm | 200 | ppm | 400 | ppm | |---|--------|------------|------|-------------|------|-------|------|-------| | Male | | | | | | | | | | Nose ^a | 50 | | 48 | | 50 | | 49 | | | Olfactory Epithelium, Degeneration ^b | 0 | | | $(1.6)^{c}$ | | (1.7) | | (2.0) | | Olfactory Epithelium, Hyperplasia, Basal Cel | 1 0 | | | (1.0) | 44** | (1.4) | | (1.7) | | Glands, Dilatation | 3 | (1.7) | 30** | (1.2) | 48** | (1.5) | 46** | (1.5) | | Goblet Cell, Hyperplasia | 1 | (2.0) | 3 | (1.7) | 7* | (1.7) | 16** | (1.6) | | Inflammation, Suppurative | 5 | (2.4) | 9 | (1.4) | 17** | (1.7) | 10 | (1.6) | | Lung | 50 | | 50 | | 50 | | 50 | | | Inflammation, Chronic, Focal | 4 | (1.0) | 4 | (1.5) | 5 | (1.6) | 14** | (1.1) | | Alveolar/bronchiolar Adenoma ^d | 0 | | 1 | | 0 | | 1 | | | Female | | | | | | | | | | Nose | 50 | | 50 | | 49 | | 49 | | | Olfactory Epithelium, Degeneration | 0 | | 50** | (1.5) | 49** | (1.8) | 48** | (2.0) | | Olfactory Epithelium, Hyperplasia, Basal Cel | 1 0 | | 25** | (1.0) | 42** | (1.3) | 45** | (1.8) | | Glands, Dilatation | 0 | | 17** | (1.3) | 38** | (1.3) | 44** | (1.7) | | Inflammation, Suppurative | 5 | (2.4) | 12 | (1.7) | 8 | (1.3) | 7 | (1.6) | | Respiratory Epithelium, Adenoma ^e | 0 | | 0 | | 0 | | 1 | | | Lung | 50 | | 50 | | 50 | | 50 | | | Alveolar Epithelium, Hyperplasia | 4 | (2.3) | 2 | (1.5) | 3 | (1.7) | 1 | (3.0) | | Inflammation, Chronic, Focal | 27 | (1.3) | 22 | (1.4) | 26 | (1.3) | 33 | (1.2) | | Alveolar/bronchiolar Adenomaf | 0 | | 0 | | 0 | | 2 | | ^{*} Significantly different ($P \le 0.05$) from the chamber control group by the Poly-3 test ^{**} P≤0.01 Number of animals with tissue examined microscopically b Number of animals with lesion c Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked d Historical incidence for 2-year inhalation studies with chamber control groups (mean \pm standard deviation): 14/399 (3.5% \pm 4.4%), range 0%-12% e Historical Incidence: 0/397 f Historical Incidence: $2/397 (0.5\% \pm 0.9\%)$, range 0%-2% cuboidal, or low columner cells, which were occasionally ciliated. Goblet cell hyperplasia was characterized by increased numbers and size of mucus-filled goblet cells, predominantly in the medial septum of level I. In studies conducted by the NTP, routine sections of the nasal cavity are taken at three levels to allow examination of the major epithelial types in the nasal cavity. The mucosa of the nasal passages in the most rostral level I, taken immediately posterior to the upper incisors, is lined by respiratory epithelium. Level II, taken at the level of the incisive papilla, includes respiratory and olfactory epithelium. The latter covers the mucosa of the dorsal meatus and adjacent dorsal septum. The most posterior level III contains the olfactory portion of the nasal cavity. The lamina propria underlying olfactory epithelium is rich in simple mucus-secreting tubulo-alveolar (Bowman's) glands and unmyelinated nerve bundles of the olfactory nerve. Respiratory epithelium is a simple pseudostratified cuboidal to columner ciliated epithelium containing a few scattered mucin-filled goblet cells. Olfactory epithelium is pseudostratified columnar epithelium composed of sustentacular cells with interposed neuroepithelial sensory cells and a single layer of flattened to cuboidal basal cells. Lung: Alveolar/bronchiolar adenomas occurred in single males from the 100 and 400 ppm groups and two females from the 400 ppm group. The incidence of this neoplasm in females exceeded the historical incidence for chamber controls. The incidence of focal chronic inflammation in 400 ppm males was significantly greater than in the chamber control group (Tables 14 and A5). Chronic inflammation of the lung was characterized by focal accumulations of (often large and foamy) histiocytes and lesser numbers of lymphocytes and neutrophils
associated with necrotic debris, interstitial fibrosis, and hyperplasia of alveolar type II epithelial cells. # **MICE** # 2-WEEK STUDY All 400 ppm mice died by the second day of the study; two male and two female 200 ppm mice also died early (Table 15). Final mean body weights and body weight gains of 100 and 200 ppm males were significantly less than those of the chamber controls, as were the final mean body weights of 25 and 50 ppm males. Lethargy and abnormal breathing were observed in mice exposed to 200 or 400 ppm. TABLE 15 Survival and Body Weights of Mice in the 2-Week Inhalation Study of Divinylbenzene-HP | Concentration Surviv | | Mean | Final Weight | | | |----------------------|--------------------------------------|----------------|------------------|-----------------|--------------------------| | | Survival ^a | Initial | Final | Change | Relative to Controls (%) | | Male | | | | | | | 0 | 5/5 | 23.3 ± 0.4 | 28.7 ± 0.2 | 5.4 ± 0.4 | | | 25 | 5/5 | 22.0 ± 0.5 | $26.5 \pm 0.6*$ | 4.5 ± 0.4 | 92 | | 50 | 5/5 | 21.6 ± 0.6 | $26.2 \pm 0.8*$ | 4.6 ± 0.5 | 91 | | 100 | 5/5 | 22.1 ± 0.4 | $25.7 \pm 0.5**$ | $3.5 \pm 0.2*$ | 90 | | 200 | 3/5 ^c | 22.4 ± 0.7 | $23.3 \pm 1.3**$ | $1.2 \pm 1.1**$ | 81 | | 400 | 0/5 ^d | 20.4 ± 1.3 | | | | | Female | | | | | | | 0 | 5/5 | 18.5 ± 0.5 | 20.9 ± 0.8 | 2.4 ± 0.6 | | | 25 | 5/5 | 20.0 ± 0.4 | 22.6 ± 0.3 | 2.7 ± 0.2 | 108 | | 50 | 5/5 | 19.3 ± 0.3 | 21.8 ± 0.7 | 2.5 ± 0.9 | 104 | | 100 | 5/5 | 19.0 ± 0.3 | 21.6 ± 0.5 | 2.6 ± 0.5 | 103 | | 200 | 3/5 ^e
0/5 ^f | 19.5 ± 0.4 | 20.2 ± 0.9 | 0.5 ± 1.1 | 97 | | 400 | 0/51 | 19.0 ± 0.4 | | | | ^{*} Significantly different ($P \le 0.05$) from the chamber control group by Williams' or Dunnett's test ^{**} P≤0.01 a Number of animals surviving at 2 weeks/number initially in group Weights and weight changes are given as mean \pm standard error. Subsequent calculations are based on animals surviving to the end of the study. c Day of death: 4, 8 Day of death: 1, 1, 2, 2, 2 e Day of death: 6, 8 Day of deaths: 2 Thymus weights of exposed groups of males were significantly less than those of the chamber controls, and relative liver weights of 100 and 200 ppm males were significantly increased (Table G3). Absolute kidney and relative liver weights of exposed groups of females were significantly greater than those of the chamber controls. Early deaths were associated with liver lesions. Periportal hepatic degeneration with hepatocellular loss and hemorrhage occurred in the 400 ppm group. At 200 ppm, there was centrilobular hepatocellular necrosis with or without mixed inflammatory cell infiltrate, mineralization, and hemosiderin accumulation. Necrosis of respiratory, transitional, and olfactory epithelium and glands in the nose occurred in early death animals. In 200 ppm mice surviving to the end of the study, hepatocellular karyomegaly (increased nuclear size) accompanied by a general increase in cell size (hypertrophy) was the predominant change. Liver changes corresponded with recorded increases in liver weights in both sexes. Renal tubule necrosis and regeneration with mineralization and granular and proteinaceous casts also occurred in this dose group. Squamous metaplasia of respiratory or transitional epithelium, olfactory epithelial atrophy, and respiratory metaplasia and hyperplasia of Bowman's glands, occurred in the nose. Minimal to mild olfactory epithelial changes were also seen in 25, 50 and 100 ppm animals. Exposure Concentration Selection Rationale: Based on decreased survival of mice exposed to 400 ppm in the 2-week study, exposure concentrations selected for the 3-month inhalation study in mice were 0, 12.5, 25, 50, 100, and 200 ppm. Although 200 ppm caused some mortality (2/5), this concentration was included in the 3-month study to allow comparison with previous studies of styrene. Styrene caused some mortality in mice; however, survivors developed resistance to hepatotoxicity in spite of continued exposure. # **3-Month Study** With the exception of one female, all 200 ppm mice died before the end of the study (Table 16). Final mean body weights and body weight gains of mice exposed to 25 ppm or greater were significantly less than those of the chamber controls. During the first 3 weeks of the study, lethargy or hypoactivity were observed in the higher exposure concentration groups. TABLE 16 Survival and Body Weights of Mice in the 3-Month Inhalation Study of Divinylbenzene-HP | Concentration Survival ^a (ppm) | | Mea | Final Weight | | | |---|-------------------|----------------|------------------|--------------------------|-----| | | Initial | Final | Change | Relative to Controls (%) | | | Male | | | | | | | 0 | 10/10 | 22.6 ± 0.3 | 36.8 ± 0.5 | 14.2 ± 0.4 | | | 12.5 | 10/10 | 22.9 ± 0.2 | 37.0 ± 0.7 | 14.1 ± 0.7 | 100 | | 25 | 10/10 | 22.7 ± 0.4 | $33.2 \pm 0.9**$ | $10.5 \pm 0.6**$ | 90 | | 50 | 10/10 | 22.8 ± 0.4 | $31.8 \pm 0.8**$ | $8.9 \pm 0.5**$ | 86 | | 100 | 10/10 | 22.5 ± 0.3 | $31.3 \pm 0.4**$ | $8.8 \pm 0.3**$ | 85 | | 200 | 0/10 ^c | | | | | | Female | | | | | | | 0 | 10/10 | 19.1 ± 0.2 | 31.1 ± 0.8 | 12.0 ± 0.8 | | | 12.5 | 10/10 | 19.6 ± 0.3 | 31.9 ± 1.2 | 12.3 ± 1.0 | 103 | | 25 | 10/10 | 19.3 ± 0.4 | $28.5 \pm 0.4**$ | $9.1 \pm 0.3**$ | 91 | | 50 | 10/10 | 19.6 ± 0.2 | $28.3 \pm 0.4**$ | $8.8 \pm 0.4**$ | 91 | | 100 | 10/10 | 19.4 ± 0.2 | $28.1 \pm 0.3**$ | $8.7 \pm 0.3**$ | 90 | | 200 | 1/10 ^d | 19.7 ± 0.2 | 26.8 | 6.2 | 86 | ^{**} Significantly different (P < 0.01) from the chamber control group by Williams' test a Number of animals surviving at 3 months/number initially in group Weights and weight changes are given as mean ± standard error. Subsequent calculations are based on animals surviving to the end of the study. Week of deaths: 1 d Week of death: 1, 1, 1, 1, 1, 2, 2, 3, 3 The hematology data for mice in the 3-month toxicity study of divinylbenzene are listed in Tables 17 and F2. There was small (< 15%) decrease in the erythron, characterized by decreases in hemoglobin concentrations, hematocrit values, and erythrocyte counts in females exposed to 25 ppm or greater; the decrease was less than 5% in all but the 200 ppm group. This change was associated with decreases (20% to 30%) in reticulocyte counts in the 50, 100, and 200 ppm groups and could suggest a minimal erythropoietic suppression for this species. In male mice exposed to 25 ppm or greater, the absolute weights of the heart, kidney, and liver were significantly decreased, and the relative weights of the lung and testis were generally increased (Table G4). Liver weights and absolute thymus weights were significantly decreased in 50 and 100 ppm females. In addition, absolute heart weights were significantly decreased in 25 ppm or greater females. These organ weight changes were considered to reflect the body weight changes noted above. There were no significant differences between exposed and chamber control groups in reproductive tissue evaluations in males or vaginal cytology parameters in females (Tables H3 and H4). TABLE 17 Selected Hematology Data for Female Mice in the 3-Month Inhalation Study of Divinylbenzene-HPa | | Chamber
Control | 12.5 ppm | 25 ppm | 50 ppm | 100 ppm | 200 ppm | |---|--|---|--|---|---|------------------------------| | n | 10 | 10 | 10 | 10 | 10 | 1 ^b | | Automated hematocrit (%)
Manual hematocrit (%)
Hemoglobin (g/dL)
Erythrocytes (10 ⁶ /µL) | 51.0 ± 0.4
51.0 ± 0.3
16.5 ± 0.1
10.34 ± 0.08 | 50.3 ± 0.4
50.8 ± 0.3
16.4 ± 0.1
$10.05 \pm 0.07*$ | 50.0 ± 0.2
$50.0 \pm 0.2*$
$16.2 \pm 0.1**$
$10.10 \pm 0.03*$ | $49.5 \pm 0.4*$
$49.6 \pm 0.5*$
$16.0 \pm 0.1**$
$10.06 \pm 0.07*$ | $49.3 \pm 0.3**$
$49.3 \pm 0.3**$
$16.0 \pm 0.1**$
$9.91 \pm 0.07**$ | 44.6
44.5
14.2
9.01 | | Reticulocytes $(10^{3}/\mu\text{L})$
Leukocytes $(10^{3}/\mu\text{L})$
Lymphocytes $(10^{3}/\mu\text{L})$ | 0.25 ± 0.02 3.42 ± 0.25 3.00 ± 0.24 | 0.24 ± 0.01
3.88 ± 0.16
3.29 ± 0.14 | 0.21 ± 0.01 3.12 ± 0.21 2.80 ± 0.19 | 0.20 ± 0.07
$0.20 \pm 0.01*$
3.24 ± 0.19
2.81 ± 0.14 | $0.20 \pm 0.01*$
2.91 ± 0.31
2.40 ± 0.19 | 0.17
1.50
1.05 | ^{*} Significantly different ($P \le 0.05$) from the chamber control group by Dunn's or Shirley's test ^{**} P<0.01 Mean \pm standard error. Statistical tests were performed on unrounded data. b No standard error was calculated or pairwise test performed for this exposure group because only single measurements were available. Although no gross lesions were observed that could be attributed to exposure to divinylbenzene-HP, microscopic lesions occurred in several tissues of exposed mice (Table 18). Microscopic lesions varied according to exposure levels and length of survival and were similar to those seen in the 2-week study. Mice in the 200 ppm groups that died early had significantly increased incidences of hepatocellular centrilobular necrosis and mineralization, renal tubule necrosis with mineralization, and granular and protein casts. Increased incidences of necrosis involving nasal cavity lateral walls, olfactory epithelium, and glands occurred in both sexes, with resultant atrophy of olfactory epithelium and glands in
females. A lower number of animals had necrotic or degenerative changes of the upper respiratory tract. All other changes were considered to be secondary to stress and/or the moribund condition of the animals and not directly associated with exposure to divinylbenzene-HP. Exposure-related changes in mice of both sexes surviving to the end of the study were restricted to the nose. Olfactory epithelial necrosis occurred in all animals from the 50 and 100 ppm exposure groups, and the incidence was greater in both sexes (reaching statistical significance in males) at 25 ppm. Olfactory epithelial atrophy and degeneration was characterized by disorganization and decreased thickness of neuroepithelium. Bowman's gland hyperplasia was characterized by increased numbers of cells lining the glands. Olfactory epithelium atrophy, degeneration, inflammation, and (regenerative) hyperplasia of Bowman's glands occurred in the majority of animals from all exposure groups. Hyaline degeneration of epithelium consisted of epithelial cytoplasmic distension with amorphous, strongly eosinophilic material. Hyaline degeneration of the respiratory epithelium had a greater incidence and severity at lower exposure concentrations and was increased in both sexes at 12.5 ppm and in females exposed to 50 and 100 ppm. Exposure Concentration Selection Rationale: Based on decreased survival and severity of liver, kidney, and nasal lesions in mice exposed to 200 ppm divinylbenzene-HP in the 3-month study, exposure concentrations selected for the 2-year inhalation study in mice were 0, 10, 30, and 100 ppm. TABLE 18 Incidences of Selected Nonneoplastic Lesions in Mice in the 3-Month Inhalation Study of Divinylbenzene-HP | | Chamber Control | 12.5 ppm | 25 ppm | 50 ppm | 100 ppm | 200 ppm | |---|-----------------|------------|------------|------------|------------|----------------| | Male | | | | | | | | Liver ^a | 10 | 0 | 0 | 0 | 10 | 10 | | Mineralization ^b | 0 | - | - | - | 0 | $6**(2.5)^{c}$ | | Centrilobular, Necrosis | 0 | | | | 0 | 10** (2.8) | | Larynx | 10 | 1 | 0 | 0 | 10 | 10 | | Degeneration, Acute | 0 | 0 | | | 0 | 3 (1.0) | | Lung | 10 | 0 | 0 | 0 | 10 | 10 | | Bronchiole, Necrosis | 0 | | | | 0 | 4* (1.0) | | Bronchiole, Epithelium, Hype | rplasia 0 | | | | 0 | 1 (1.0) | | Nose | 10 | 10 | 10 | 10 | 10 | 10 | | Infiltration Cellular, Mixed Co | ell 0 | 9** (1.0) | 10** (1.0) | 10** (1.0) | 10**(1.0) | 0 | | Glands, Atrophy | 0 | 0 | 0 | 0 | 10**(2.6) | 0 | | Glands, Hyperplasia | 0 | 9** (2.1) | 10** (3.5) | 10** (2.7) | 10**(1.9) | 0 | | Glands, Necrosis | 0 | 0 | 0 | 0 | 0 | 10** (4.0) | | Lateral Wall, Necrosis | 0 | 0 | 0 | 0 | 0 | 9** (2.0) | | Olfactory Epithelium, Atrophy
Olfactory Epithelium, Degene | | 10** (1.4) | 10** (2.0) | 10** (2.0) | 10** (2.0) | 0 | | Hyaline | 0 | 7** (1.4) | 10** (2.0) | 10** (2.0) | 9** (2.0) | 0 | | Olfactory Epithelium, Necrosi
Respiratory Epithelium, Dege | | 0 | 4* (1.0) | 10** (1.1) | 10** (1.9) | 10** (3.9) | | Hyaline | 0 | 8** (1.4) | 1 (1.0) | 0 | 1 (2.0) | 0 | | Frachea | 9 | 0 | 0 | 0 | 10 | 10 | | Degeneration | 0 | | | | 0 | 2 (1.0) | | Kidney | 10 | 2 | 1 | 10 | 10 | 9 | | Casts Granular | 0 | 0 | 0 | 0 | 0 | 8** (2.9) | | Casts Protein | 0 | 0 | 1 (1.0) | 0 | 0 | 8**(3.4) | | Mineralization | 0 | 0 | 0 | 0 | 0 | 8**(2.8) | | Renal Tubule, Necrosis | 0 | 0 | 0 | 0 | 0 | 9**(4.0) | | Renal Tubule, Regeneration | 0 | 2* (1.0) | 0 | 0 | 1 (1.0) | 1 (1.0) | TABLE 18 Incidences of Selected Nonneoplastic Lesions in Mice in the 3-Month Inhalation Study of Divinylbenzene-HP | | Chamber Control | 12.5 ppm | 25 ppm | 50 ppm | 100 ppm | 200 ppm | |--|-----------------|------------|-----------|------------|-----------|------------| | Female | | | | | | | | Liver | 10 | 0 | 0 | 0 | 10 | 10 | | Infiltration Cellular, Histiocyt | e 0 | | | | 0 | 7** (1.6) | | Mineralization | 0 | | | | 0 | 7** (2.1) | | Pigmentation | 0 | | | | 0 | 4* (1.0) | | Centrilobular, Hypertrophy | 0 | | | | 0 | 4* (1.8) | | Centrilobular, Necrosis | 0 | | | | 0 | 9** (2.4) | | Larynx | 10 | 0 | 0 | 0 | 10 | 10 | | Degeneration | 0 | | | | 0 | 2 (1.0) | | Lung | 10 | 0 | 0 | 0 | 10 | 10 | | Bronchiole, Necrosis | 0 | | | | 0 | 2 (1.0) | | Nose | 10 | 10 | 10 | 10 | 10 | 10 | | Infiltration Cellular, Mixed C | ell 0 | 9**(1.0) | 10**(1.0) | 10** (1.0) | 10**(1.0) | 5* (1.0) | | Glands, Atrophy | 0 | 0 | 0 | 0 | 7**(1.1) | 5* (3.4) | | Glands, Hyperplasia | 0 | 10**(1.3) | 10**(3.2) | 10** (3.0) | 10**(2.3) | 3 (1.3) | | Glands, Necrosis | 0 | 0 | 0 | 0 | 0 | 6** (3.2) | | Lateral Wall, Necrosis | 0 | 0 | 0 | 0 | 0 | 7** (1.7) | | Olfactory Epithelium, Atroph
Olfactory Epithelium, Degene | | 10**(1.3) | 10**(2.1) | 10** (2.0) | 10**(1.9) | 5* (2.8) | | Hyaline Hyaline | 0 | 10**(1.3) | 10**(2.0) | 10** (2.8) | 10**(2.6) | 1 (2.0) | | Olfactory Epithelium, Necros | is 0 | 0 | 3 (1.0) | 10** (1.1) | 10**(1.5) | 10** (3.4) | | Respiratory Epithelium, Dege | neration, | | | | | | | Hyaline | 0 | 10**(2.0)* | 6**(1.2) | 6** (1.2) | 1 (1.0) | 0 | | Trachea | 10 | 0 | 0 | 0 | 10 | 10 | | Degeneration | 0 | | | | 0 | 2 (1.0) | | Kidney | 10 | 0 | 2 | 10 | 10 | 10 | | Casts Granular | 0 | | 0 | 0 | 0 | 8** (1.8) | | Casts Protein | 0 | | 1 (1.0) | 0 | 0 | 7** (2.3) | | Mineralization | 0 | | 0 | 0 | 0 | 5* (2.4) | | Renal Tubule, Necrosis | 0 | | 0 | 0 | 0 | 9** (3.3) | ^{*} Significantly different ($P \le 0.05$) from the chamber control group by the Fisher exact test ^{**} P<0.01 a Number of animals with tissue examined microscopically Number of animals with lesion Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked ## 2-YEAR STUDY #### Survival Estimates of 2-year survival probabilities for male and female mice are shown in Table 19 and in the Kaplan-Meier survival curves (Figure 5). Survival of all exposed groups of mice was similar to that of the chamber controls. Table 19 Survival of Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |---|------------------------|----------|----------|----------| | Male | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Moribund | 7 | 6 | 5 | 4 | | Natural deaths | 2 | 6 | 3 | 3 | | Animals surviving to study termination | 41 | 38 | 42 | 43 | | Percent probability of survival at end of study | 82 | 76 | 84 | 86 | | Mean survival (days) | 702 | 703 | 707 | 711 | | Survival analysis ^c | P=0.433N | P=0.687 | P=0.966N | P=0.750N | | | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Accidental death ^d | 0 | 0 | 1 | 0 | | Moribund | 11 | 12 | 8 | 7 | | Natural deaths | 6 | 3 | 3 | 1 | | Animals surviving to study termination | 33 | 35 | 38 | 42 | | Percent probability of survival at end of study | 66 | 70 | 78 | 84 | | Mean survival (days) | 681 | 700 | 689 | 705 | | urvival analysis | P=0.050N | P=0.729N | P=0.293N | P=0.053N | Kaplan-Meier determinations Mean of all deaths (uncensored, censored, and terminal sacrifice) The result of the life table trend test (Tarone, 1975) is in the chamber control column, and the results of the life table pairwise comparisons (Cox, 1972) with the chamber controls are in the exposed group columns. A negative trend or lower mortality in an exposed d group is indicated by **N**. Censored from survival analyses FIGURE 5 Kaplan-Meier Survival Curves for Male and Female Mice Exposed to Divinylbenzene-HP by Inhalation for 2 Years ## **Body Weights and Clinical Findings** Mean body weights of 30 and 100 ppm males were generally less than those of the chamber controls throughout the first year of the study; those of 100 ppm males remained less than those of the chamber controls at the end of the study (Figure 6; Tables 20 and 21). Mean body weights of 10 ppm females were less than those of the chamber controls during the middle third of the study. Mean body weights of 30 ppm females were less than those of the chamber controls from week 21 to nearly the end of the study. Mean body weights of 100 ppm females were less than those of the chamber controls during the entire 2-year study. No clinical findings related to chemical exposure were observed. FIGURE 6 Growth Curves for Male and Female Mice Exposed to Divinylbenzene-HP by Inhalation for 2 Years TABLE 20 Mean Body Weights and Survival of Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | Weeks | <u>Chan</u> | iber Control | | 10 ppm | | | 30 ppm | | | 100 ppm | | |-------------|-------------|---------------------|---------|---------------------|---------------------|---------|---------------------|---------------------|---------|---------------------|---------------------| | on
Study | Av. Wt. | No. of
Survivors | Av. Wt. | Wt. (% of controls) | No. of
Survivors | Av. Wt. | Wt. (% of controls) | No. of
Survivors | Av. Wt. | Wt. (% of controls) | No. of
Survivors | | 1 | 22.9 | 50 | 22.4 | 98 | 50 | 22.3 | 97 | 50 | 22.4 | 98 | 50 | | 5 | 29.7 | 50 | 28.8 | 97 | 50 | 27.8 | 94 | 50 | 26.6 | 90 | 50 | | 9 | 33.6 | 50 | 32.7 | 97 | 50 | 30.8 | 92 | 50 | 29.0 | 86 | 50 | | 13 | 36.8 | 50 | 35.8 | 97 | 50 | 33.0 | 90 | 50 | 31.6 | 86 | 50 | | 17 | 40.1 | 50 | 38.5 | 96 | 50 | 35.4 | 88 | 50 | 34.0 | 85 | 50 | | 21 | 42.2 | 50 | 40.5 | 96 | 50 | 36.6 | 87 | 50 | 35.9 | 85 | 50 | | 25 | 44.9 | 50 | 43.5 | 97 | 50 | 39.1 | 87 | 50 | 38.7 | 86 | 50 | | 29 | 47.0 | 50 | 45.7 | 97 | 50 | 41.0 | 87 | 50 | 40.8 | 87 | 50 | | 33 | 49.1 | 50 | 47.5 | 97 | 50 | 43.1 | 88 | 50 | 42.8 | 87 | 50 | | 37 | 49.9 | 50 | 49.0 | 98 | 50 | 44.8 | 90 | 50 | 45.3 | 91 | 50 | | 41 | 50.8 | 50 | 49.5 | 97 | 50 | 46.0 | 91 | 50 | 46.4 | 91 | 50 | | 45 | 50.9 | 50 | 50.0 | 98 | 50 | 46.8 | 92 | 50 | 47.2 | 93 | 50 | | 49 | 51.6 | 50 | 51.0 | 99 | 49 | 48.1 | 93 | 50 | 48.5 | 94 | 50 | | 53 | 51.9 | 50 | 51.1 | 99 | 49 |
48.9 | 94 | 50 | 48.8 | 94 | 50 | | 57 | 51.6 | 50 | 52.0 | 101 | 49 | 49.5 | 96 | 50 | 50.2 | 97 | 50 | | 61 | 52.2 | 50 | 52.7 | 101 | 49 | 50.2 | 96 | 50 | 51.2 | 98 | 50 | | 65 | 51.5 | 50 | 52.6 | 102 | 49 | 49.2 | 96 | 50 | 50.1 | 97 | 50 | | 69 | 51.6 | 49 | 52.0 | 101 | 49 | 48.9 | 95 | 49 | 50.3 | 98 | 49 | | 73 | 51.8 | 49 | 51.8 | 100 | 49 | 49.1 | 95 | 49 | 50.3 | 97 | 49 | | 77 | 51.8 | 48 | 52.3 | 101 | 49 | 49.2 | 95 | 48 | 50.0 | 97 | 48 | | 81 | 50.5 | 47 | 51.6 | 102 | 47 | 48.5 | 96 | 48 | 48.7 | 96 | 47 | | 85 | 50.4 | 45 | 50.4 | 100 | 47 | 47.1 | 94 | 45 | 46.9 | 93 | 47 | | 89 | 51.2 | 44 | 51.3 | 100 | 46 | 48.1 | 94 | 45 | 47.9 | 94 | 46 | | 92 | 50.7 | 43 | 50.5 | 100 | 44 | 47.9 | 95 | 44 | 47.3 | 93 | 46 | | 94 | 50.0 | 43 | 50.4 | 101 | 43 | 47.9 | 96 | 44 | 47.0 | 94 | 46 | | 96 | 49.8 | 42 | 50.0 | 100 | 43 | 47.3 | 95 | 44 | 46.2 | 93 | 45 | | 98 | 49.7 | 41 | 49.5 | 100 | 42 | 47.6 | 96 | 43 | 45.6 | 92 | 45 | | 100 | 49.3 | 41 | 49.3 | 100 | 42 | 47.6 | 97 | 42 | 45.6 | 93 | 44 | | 102 | 48.7 | 41 | 48.9 | 100 | 40 | 47.4 | 97 | 42 | 45.4 | 93 | 44 | | 104 | 48.9 | 41 | 50.0 | 102 | 38 | 47.7 | 98 | 42 | 45.7 | 94 | 43 | | Mean for | weeks | | | | | | | | | | | | 1-13 | 30.8 | | 29.9 | 97 | | 28.5 | 93 | | 27.4 | 89 | | | 14-52 | 47.4 | | 46.1 | 97 | | 42.3 | 89 | | 42.2 | 89 | | | 53-104 | 50.7 | | 51.0 | 101 | | 48.4 | 95 | | 48.1 | 95 | | TABLE 21 Mean Body Weights and Survival of Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | Weeks | Chamb | er Control | | 10 ppm | | | 30 ppm | | | 100 ppm | | |----------|---------|------------|---------|--------|-----------|---------|-----------|-----------|---------|---------|-----------| | on | Av. Wt. | No. of | Av. Wt. | | No. of | Av. Wt. | Wt. (% of | No. of | Av. Wt. | | No. of | | Study | (g) | Survivors | (g) | | Survivors | (g) | | Survivors | (g) | | Survivors | | | | | | | | | | | | | | | 1 | 19.4 | 50 | 19.0 | 98 | 50 | 18.9 | 97 | 50 | 18.6 | 96 | 50 | | 5 | 24.4 | 50 | 24.5 | 100 | 50 | 24.1 | 99 | 50 | 22.7 | 93 | 50 | | 9 | 27.1 | 50 | 28.2 | 104 | 50 | 27.0 | 100 | 50 | 25.3 | 93 | 50 | | 13 | 29.2 | 50 | 31.0 | 104 | 50 | 28.9 | 99 | 50 | 26.9 | 92 | 50 | | 17 | 33.0 | 50 | 34.2 | 104 | 50 | 31.6 | 99
96 | 50 | 29.7 | 90 | 50 | | 21 | 36.4 | 50 | 37.6 | 104 | 50 | 32.7 | 90 | 50 | 30.9 | 85 | 50 | | 25 | 40.2 | 50 | 40.8 | 103 | 50 | 34.7 | 90
86 | 50 | 33.2 | 83 | 50 | | 29 | 43.1 | 50 | 43.6 | 102 | 50 | 34.7 | 87 | 50 | 34.8 | 81 | 50 | | | | | | | | | | | | | | | 33 | 46.8 | 50 | 45.9 | 98 | 50 | 39.4 | 84 | 50 | 37.0 | 79 | 49 | | 37 | 48.8 | 50 | 47.9 | 98 | 50 | 41.6 | 85 | 50 | 40.2 | 82 | 49 | | 41 | 51.2 | 50 | 48.6 | 95 | 50 | 42.5 | 83 | 50 | 40.3 | 79 | 49 | | 45 | 52.9 | 50 | 50.3 | 95 | 50 | 44.0 | 83 | 50 | 41.6 | 79 | 49 | | 49 | 54.8 | 50 | 52.2 | 95 | 50 | 46.0 | 84 | 49 | 43.1 | 79 | 49 | | 53 | 57.1 | 48 | 54.2 | 95 | 50 | 48.4 | 85 | 48 | 44.0 | 77 | 49 | | 57 | 59.2 | 47 | 55.7 | 94 | 50 | 49.6 | 84 | 48 | 45.5 | 77 | 48 | | 61 | 61.8 | 47 | 57.2 | 93 | 50 | 51.2 | 83 | 48 | 47.2 | 76 | 47 | | 65 | 61.2 | 46 | 58.0 | 95 | 50 | 51.0 | 83 | 48 | 47.7 | 78 | 47 | | 69 | 62.0 | 45 | 58.0 | 94 | 50 | 51.3 | 83 | 48 | 48.3 | 78 | 47 | | 73 | 63.0 | 45 | 58.7 | 93 | 49 | 51.8 | 82 | 47 | 48.7 | 77 | 47 | | 77 | 62.9 | 45 | 58.8 | 94 | 48 | 51.9 | 83 | 46 | 49.2 | 78 | 47 | | 81 | 61.2 | 45 | 58.7 | 96 | 46 | 53.1 | 87 | 44 | 49.5 | 81 | 47 | | 85 | 59.3 | 43 | 58.1 | 98 | 44 | 51.5 | 87 | 42 | 49.1 | 83 | 47 | | 89 | 60.2 | 42 | 59.2 | 98 | 43 | 53.5 | 89 | 41 | 50.3 | 84 | 47 | | 92 | 59.4 | 41 | 58.2 | 98 | 42 | 53.3 | 90 | 41 | 50.5 | 85 | 47 | | 94 | 58.2 | 41 | 57.5 | 99 | 42 | 53.3 | 92 | 41 | 50.5 | 87 | 47 | | 96 | 57.5 | 39 | 56.3 | 98 | 41 | 52.8 | 92 | 41 | 50.1 | 87 | 47 | | 98 | 56.1 | 37 | 55.3 | 99 | 41 | 52.7 | 94 | 41 | 50.1 | 89 | 47 | | 100 | 54.6 | 36 | 53.9 | 99 | 40 | 52.0 | 95 | 41 | 48.7 | 89 | 47 | | 102 | 53.3 | 34 | 53.5 | 100 | 38 | 51.2 | 96 | 40 | 49.7 | 93 | 44 | | 104 | 53.1 | 33 | 54.1 | 102 | 36 | 51.7 | 97 | 38 | 48.8 | 92 | 44 | | | | | | | | | | | | | | | Mean for | | | | | | | | | | | | | 1-13 | 25.0 | | 25.7 | 103 | | 24.7 | 99 | | 23.4 | 94 | | | 14-52 | 45.2 | | 44.6 | 99 | | 38.9 | 86 | | 36.8 | 82 | | | 53-104 | 58.8 | | 56.8 | 97 | | 51.8 | 88 | | 48.7 | 83 | | | | | | | | | | | | | | | #### Pathology and Statistical Analyses This section describes the statistically significant or biologically noteworthy changes in the incidences of neoplasms and/or nonneoplastic lesions of the lung, nose, eye, and liver. Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary neoplasms that occurred with an incidence of at least 5% in at least one animal group, and historical incidences for the neoplasms mentioned in this section are presented in Appendix C for male mice and Appendix D for female mice. Lung: The incidences of alveolar/bronchiolar adenoma and alveolar/bronchiolar adenoma or carcinoma (combined) in 100 ppm males were slightly greater than the concurrent and historical chamber control incidences (Tables 22, C3 and C4). However, decreased incidences were seen in the 10 and 30 ppm groups when compared with concurrent and historical chamber controls. In view of the lack of dose response, alveolar/bronchiolar adenoma and/or carcinoma in male mice were not considered to be associated with exposure to divinylbenzene. The incidence and severity of alveolar epithelial hyperplasia were higher in all exposed groups of males when compared with controls but the average severity of the lesion did not increase with exposure concentration (Tables 22 and C5). The incidences of alveolar/bronchiolar adenoma and alveolar/bronchiolar adenoma or carcinoma (combined) in all exposed groups of females were generally, although not significantly, higher that the concurrent and historical control incidences (Tables 22, D3, and D4). In addition, there was a greater incidence and/or severity of alveolar epithelial hyperplasia in 30 and 100 ppm females when compared with chamber controls (Tables 22 and D5). Therefore, there was a possible association between divinylbenzene-HP exposure and the occurrence of alveolar/bronchiolar adenoma or carcinoma in female mice. In both sexes, the incidences of minimal to mild atypical bronchiolar epithelial hyperplasia were significantly increased and, in general, the average group severity increased with increasing exposure concentrations. Incidences of alveolar histiocytic cellular infiltration increased with increasing exposure concentration in females, and the increase was significant in the 100 ppm group. TABLE 22 Incidences of Neoplasms and Nonneoplastic Lesions of the Lung in Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | Chan | nber Control | 10 ppm | 30 ppm | 100 ppm | |--|--------------|-------------------------|------------|-------------| | Male | | | | | | Number Examined Microscopically | 49 | 49 | 49 | 49 | | Bronchiole, Hyperplasia, Atypical ^a | 0 | 38** (1.1) ^b | 46** (1.8) | 46**(2.0) | | Alveolar Epithelium, Hyperplasia | 1 (1.0) | 5 (3.2) | 5 (2.0) | 7* (2.0) | | Alveolus, Infiltration Cellular, Histiocyte | 2 (1.5) | 4 (1.0) | 5 (1.0) | 1 (1.0) | | Alveolar/bronchiolar Adenoma (includes multiple) | 12 | 6 | 6 | 15 | | Alveolar/bronchiolar Carcinoma (includes multiple) | 5 | 4 | 3 | 9 | | Alveolar/bronchiolar Adenoma or Carcinoma | | | | | | Overall Rate f | 16/49 (33%) | 10/49 (20%) | 8/49 (16%) | 20/49 (41%) | | Adjusted Rate | 34.7% | 21.9% | 17.4% | 42.0% | | Terminal Rate ^g | 15/41 (37%) | 9/38 (24%) | 8/42 (19%) | 17/43 (40%) | | First Incidence (days) | 536 | 711 | 729 (T) | 598 | | Poly-3 test | P=0.053 | P=0.128N | P=0.046N | P=0.306 | | Female | | | | | | Number Examined Microscopically | 50 | 50 | 50 | 49 | | Bronchiole, Hyperplasia, Atypical | 0 | 39** (1.3) | 45** (1.8) | 48** (2.1) | | Alveolar Epithelium, Hyperplasia | 4 (1.8) | 3 (1.7) | 4 (2.3) | 8 (2.5) | | Alveolus, Infiltration Cellular, Histiocyte | 3 (1.0) | 6 (1.0) | 9 (1.1) | 17** (1.2) | | Aiveorus, minutation Centulai, mistiocyte | 3 (1.0) | 0 (1.0) | 9 (1.1) | 17 (1.2) | | Alveolar/bronchiolar Adenoma (includes multiple) | 4 | 9 | 4 | 8 | | Alveolar/bronchiolar Carcinoma (includes multiple) | 2 | 5 | 4 | 5 | | Anveolat/oronemolat Caremonia (merades munipie) | 2 | 3 | - | 5 | | Alveolar/bronchiolar Adenoma or Carcinoma | | | | | | Overall Rate | 6/50 (12%) | 12/50 (24%) | 8/50 (16%) | 13/49 (27%) | | Adjusted Rate | 14.1% | 26.7% | 17.9% | 27.7% | | Terminal Rate | 6/33 (18%) | 11/35 (31%) | 6/38 (16%) | 11/42 (26%) | | First Incidence (days) | 731 (T) | 719 | 536 | 697 | | Poly-3 test | P=0.161 | P=0.114 | P=0.421 | P=0.092 | ^{*} Significantly different ($P \le 0.05$) from the chamber control group by the Poly-3 test ^{**} P≤0.01 ⁽T) Terminal sacrifice Number of animals with lesion Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked Historical incidence for 2-year inhalation studies with chamber control groups (mean ± standard deviation): 74/349 (21.2% ± 5.8%), range 12%-26% Historical incidence: 115/349 (33.0% ± 6.0%), range 26%-44% Number of animals with neoplasm per number of animals with lung examined microscopically Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality Observed incidence at terminal kill Beneath the chamber control incidence is the P value associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the chamber controls and that exposed group. The Poly-3 test accounts for differential mortality in animals that do not reach terminal sacrifice. A lower incidence in an exposed group is indicated by **N**. Historical incidence: $17/349 (4.9 \% \pm 2.5\%)$, range 2%-8% Historical incidence: $27/349 (7.8\% \pm 4.3\%)$, range 2%-14%
Alveolar epithelial hyperplasia is considered to represent a morphological continuum with alveolar/bronchiolar neoplasms, and it consisted of focal thickening of alveolar septae by increased numbers of prominent, cuboidal, type II pneumocytes, with maintenance of normal alveolar architecture. Alveolar/bronchiolar adenomas consisted of well-demarcated hypercellular masses distorting normal septal architecture and characterized by well-differentiated cuboidal cells forming papillary projections into alveolar or bronchiolar lumina. Alveolar/bronchiolar carcinomas were more irregular, hypercellular masses distorting normal architecture, with variable peripheral compression and invasion. Component cells were pleomorphic, polygonal to columnar, arranged in solid sheets or forming papillary projections into the alveolar or bronchiolar lumina. Regionally extensive bronchiolar atypical epithelial hyperplasia occurred within bronchioles and extended to terminal bronchioles characterized by foci of enlarged karyomegalic cells with increased cytoplasmic and nuclear basophilia in single and multiple layers with variable loss of cellular orientation and occasionally formed outfolding, intraluminal papillary projections. This change was morphologically consistent with that seen in the later stages of airway epithelium regeneration (Dixon *et al.*, 1999). It has also been described as a putative preneoplastic lesion in the lungs of mice exposed to styrene. It is unclear whether it represents a preneoplastic change in this study. It was distinct in location and morphology from alveolar epithelial hyperplasia. Nose: A single incidence of neuroblastoma of the olfactory epithelium occurred in a 100 ppm female (Tables 23 and D1). Multifocally expanding the lamina propria and distorting Bowman's glands of the nasal septum and turbinates (Section 3) were clusters and cords of hyperchromatic cells. Component cells had ovoid to irregular nuclei with prominent nucleoli. Cytoplasm was scant and amphophilic. There was moderate anisokariosis, plentiful mitoses, and admixed karryorhectic debris. In one area, a small, poorly-circumscribed mass was composed of similar cells, which occasionally formed rosettes and extended to, but did not invade, turbinate bone. Olfactory neuroblastomas are an extremely rare neoplasm in mice, with no recorded cases in historical background data (all routes of administration; 0/1,555). They arise within areas of atypical epithelial hyperplasia and progress to olfactory neuroblastoma without a preceding benign neoplastic lesion. Olfactory neuroblastomas are generally TABLE 23 Incidences of Neoplasms and Nonneoplastic Lesions of the Nose in Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber | Control | 10 ppm | 30 ppm | 100 ppm | |--|---------|-------------|------------|------------|------------| | Male | | | | | | | Number Examined Microscopically | 50 | | 50 | 49 | 50 | | Inflammation, Suppurative a | 3 | $(1.0)^{b}$ | 47** (1.4) | 49** (1.9) | 49** (1.9) | | Glands, Respiratory Epithelium, Metaplasia
Olfactory Epithelium, Respiratory Epithelium | 12 | (1.0) | 50** (2.9) | 49** (4.0) | 50** (3.9) | | Metaplasia | 1 | (2.0) | 50** (3.1) | 49** (4.0) | 50** (3.9) | | Olfactory Epithelium, Degeneration, Hyaline | 5 | (1.0) | 50** (1.9) | 48** (1.8) | 11 (1.1) | | Female | | | | | | | Number Examined Microscopically | 50 | | 50 | 50 | 49 | | Inflammation, Suppurative | 1 | (1.0) | 50** (1.7) | 49** (2.0) | 49** (2.4) | | Glands, Respiratory Epithelium, Metaplasia
Olfactory Epithelium, Respiratory Epithelium | 3 | (1.0) | 50** (3.1) | 50** (3.6) | 49** (4.0) | | Metaplasia | ., | | 50** (3.1) | 50** (3.9) | 49** (3.9) | | Olfactory Epithelium, Degeneration, Hyaline | | (1.5) | 50** (2.4) | 40** (1.8) | 8 (1.6) | | Olfactory Epithelium, Neuroblastoma ^c | 0 | | 0 | 0 | 1 | ^{**} Significantly different (P≤0.01) from the chamber control group by the Poly-3 test destructive and highly invasive, often invading the brain by extension through the ethmoid bone. This was a very marginal lesion, barely meeting the criteria for neoplasia. No cases of atypical hyperplasia were seen in males or females from any of the exposure groups. Incidences of suppurative inflammation and respiratory epithelial metaplasia of Bowman's glands and olfactory epithelium were significantly increased in all exposed groups of mice, and the severities of these lesions tended to increase with increasing exposure concentration (Tables 23, C5, and D5). Incidences of hyaline degeneration of the olfactory epithelium were significantly increased in 10 and 30 ppm males and females. These lesions are consistent with ongoing degeneration and regeneration of olfactory epithelium and associated glands. Number of animals with lesion Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked Historical incidence for 2-year inhalation studies with chamber control groups: 0/348 Microscopically, suppurative inflammation consisted of accumulations of neutrophils and proteinaceous fluid in the nasal lumen, with occasional extension into the lumina of Bowman's glands. Respiratory metaplasia of the olfactory epithelium was characterized by replacement of normal olfactory epithelium in Level II and, to a greater extent, Level III by ciliated respiratory epithelium. Increasing severity corresponded to extension of metaplastic epithelium from the dorsal meatus to involve the turbinates. Respiratory metaplasia of Bowman's glands was diagnosed when there was extension of this ciliated epithelium (Plates 3 and 4) into, and replacement of subjacent Bowman's gland epithelium with a corresponding decrease in lumenal area. Hyaline degeneration of olfactory epithelium, usually involving the lateral walls of ethmoid turbinates in Level III, consisted of areas of epithelial cytoplasmic distension with amorphous, strongly eosinophilic material. *Eye:* The incidence of minimal corneal mineralization was significantly increased in 100 ppm females (chamber control, 0/50; 10 ppm, 0/50; 30 ppm, 0/50; 100 ppm, 6/49; Table D5); minimal corneal mineralization also occurred in two 100 ppm males (0/49, 0/47, 0/47, 2/50; Table C5). Histologically, this change was characterized by focal mineralization and cleft formation in the stroma with atrophy of overlying epithelium. There was no evidence of concurrent ocular disease, and harderian gland adenoma occurred in only one of the 100 ppm females that had corneal mineralization (data not shown). Liver: In general, exposure of mice to divinylbenzene-HP was associated with negative trends in the incidences of hepatocellular proliferative lesions (Tables 24, C3, and D3). Incidences of hepatocellular adenoma were significantly decreased in 30 and 100 ppm males, and the incidences were below the historical range in chamber controls. Incidences of hepatocellular adenoma or carcinoma (combined) were at or below the lower end of the historical range in all exposed groups of males, and the incidence in the 30 ppm group was significantly decreased. Hepatoblastoma occurred in two 30 ppm males; this lesion has not been observed in historical chamber control male mice. Incidences of hepatocellular adenoma and adenoma or carcinoma (combined) were significantly decreased in all exposed groups of females, and the incidences were at or below the lower end of the historical control ranges for chamber control female mice (Tables 24 and D3). TABLE 24 Incidences of Neoplasms of the Liver in Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |---|------------------------|-------------|-------------|-------------| | Male | | | | | | Number Examined Microscopically
Hepatocellular Adenoma, Multiple | 50 | 50 | 50 | 50 | | Hepatocellular Adenoma, Multiple ^a | 12 | 5* | 2** | 1** | | Hepatocellular Adenoma (includes multiple) | | | | | | Overall rate | 22/50 (44%) | 17/50 (34%) | 12/50 (24%) | 12/50 (24%) | | Adjusted rate e | 47.1% | 35.8% | 25.2% | 25.4% | | Terminal rate | 20/41 (49%) | 13/38 (34%) | 9/42 (21%) | 12/43 (28%) | | | ` / | | ` / | | | First incidence (days) | 456 | 543 | 526 | 729 (T) | | Poly-3 test ¹ | P=0.039N | P=0.181N | P=0.020N | P=0.022N | | Hepatocellular Carcinoma (includes multiple) | 13 | 11 | 9 | 10 | | Hepatocellular Adenoma or Carcinoma ^g | | | | | | Overall rate | 30/50 (60%) | 26/50 (52%) | 20/50 (40%) | 22/50 (44%) | | Adjusted rate | 61.8% | 53.2% | 40.0% | 46.0% | | Terminal rate | 24/41 (59%) | 17/38 (45%) | 12/42 (29%) | 21/43 (49%) | | | 456 | 543 | 479 | 533 | | First incidence (days) | | | | | | Poly-3 test | P=0.131N | P=0.256N | P=0.023N | P=0.086N | | Hepatoblastoma ^h | 0 | 0 | 2 | 0 | | Female | | | | | | Number Examined Microscopically . | 49 | 50 | 50 | 50 | | Hepatocellular Adenoma (includes multiple) | | | | | | Overall rate | 17/49 (35%) | 7/50 (14%) | 6/50 (12%) | 5/50 (10%) | | Adjusted rate | 39.7% | 15.4% | 13.6% | 10.7% | | Terminal rate | 13/33 (39%) | 5/35 (14%) | 5/38 (13%) | 5/42 (12%) | | | ` ′ | ` / | ` / | ` / | | First incidence (days) | 625
P. 0.010M | 537 | 709 | 731 (T) | | Poly-3 test | P=0.010N | P=0.008N | P=0.004N | P<0.001N | | Hepatocellular Carcinoma (includes multiple) | 5 | 4 | 3 | 2 | | Hepatocellular Adenoma or Carcinoma | | | | | | Overall rate | 19/49 (39%) | 10/50 (20%) | 8/50 (16%) | 7/50 (14%) | | Adjusted rate | 43.9% | 21.9% | 17.9% | 14.9% | | Terminal rate | 14/33 (42%) | 7/35 (20%) | 6/38 (16%) | 7/42 (17%) | | First incidence (days) | 586 | 537 | 501 | , , | | ` • / | | | | 731 (T) | | Poly-3 test | P=0.012N | P=0.021N | P=0.006N | P=0.002N | ^{*} Significantly different ($P \le 0.05$) from the chamber control group by the Poly-3 test ^{**} P≤0.01 ⁽T) Terminal sacrifice Number of animals with
lesion Historical incidence for 2-year inhalation studies with chamber control groups (mean \pm standard deviation): 134/350 (38.3% \pm 6.3%), range 30%-46% Number of animals with neoplasm per number of animals with liver examined microscopically d Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality Observed incidence at terminal kill Beneath the chamber control incidence is the P value associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the chamber controls and that exposed group. The Poly-3 test accounts for differential mortality in animals that do not reach terminal sacrifice. A negative trend or a lower incidence in an exposed group is indicated by N. Historical incidence: $146/350 (56.0\% \pm 6.2\%)$, range 50%-68% h Historical incidence: 0/350 Historical incidence: 78/347 (22.5% ± 8.1%), range 12%-35% Historical incidence: 108/347 (31.1% ± 6.8%), range 22%-39% Decreases in body weight were insufficient to account for the decreased incidence of hepatocellular neoplasms in all exposed groups of females, according to data reported by Haseman *et al.* (1997). The reason for this decrease is, therefore, unclear. ### **GENETIC TOXICOLOGY** Divinylbenzene was not mutagenic in *Salmonella typhimurium* strains TA97, TA98, TA100, TA1535, or TA1537 or the *Escherichia coli* tester strain WPM uvrA when tested with and without induced hamster or rat liver S9 in any of three independently conducted assays (Tables E1 and E2; Zeiger *et al.*, 1987). The highest concentration tested at one laboratory was 100 μg/plate; the other two laboratories tested higher concentrations, up to 1,000 μg/plate. It should be considered that inadequate exposure of the tester strains may have occurred, as incubation with this volatile compound was not carried out within the closed environment of a desiccator. No increases in the frequencies of micronucleated normochromatic erythrocytes or alterations in the percentage of polychromatic erythrocytes were seen in peripheral blood of male or female B6C3F₁ mice exposed to divinylbenzene-HP by inhalation (up to 200 ppm) for 3 months (Table E2). **Plate 1** Marked olfactory epithelial degeneration with mild basal cell hyperplasia involving the nasal turbinates of a female F344/N rat exposed to 400 ppm divinylbenzene-HP for 2 years. $H\&E \times 10$ **Plate 3** Marked respiratory epithelial metaplasia involving glands and olfactory epithelium and suppurative exudate in the nose of a female $B6C3F_1$ mouse exposed to 100 ppm divinylbenzene-HP for 2 years. $H\&E \times 10$ Plate 2 Higher magnification of Plate 1. Note olfactory epithelial degeneration characterized by loss and disorganization of neuroepithelial cells and increased numbers of basal cells. H&E \times 20 Plate 4 Higher magnification of Plate 3. Note replacement of olfactory and glandular epithelium with ciliated respiratory epithelium (respiratory metaplasia). The mucosa is mildly inflamed, and inflammatory exudate variably fills glandular lumina. H&E × 20 # **DISCUSSION AND CONCLUSIONS** Divinylbenzene was nominated by the National Cancer Institute for carcinogenesis studies based upon the potential for worker exposure and the structural similarity of divinylbenzene to styrene, a possible human carcinogen (Group 2B) (IARC, 2002). Styrene is metabolized by cytochrome P450, principally CYPE1 and CYP2F2 (Nakajima *et al.*, 1994; Carlson, 1997; Green *et al.*, 2001a), to styrene-7,8-epoxide, a direct-acting carcinogen (IARC, 1987), and divinylbenzene is likely oxidized to an epoxide and/or diepoxide by this same pathway. Because divinylbenzene has two reactive vinyl substituents and can be metabolized to a diepoxide, it may be more reactive and toxic than styrene. In the 2-week inhalation studies, rats and mice were exposed to 25, 50, 100, 200, or 400 ppm divinylbenzene-high purity (divinylbenzene-HP). These exposure concentrations were selected based on the maximum attainable concentration that could be generated without aerosolization of 480 ppm. In the rat study, there were no deaths and only a modest decrease in body weights (10% and 8%, respectively for males and females) in the 400 ppm group. The nasal cavity, lung, liver, and kidney were identified as potential target sites for divinylbenzene-HP based upon nasal lesions and increases in organ weights, primarily in the 200 and 400 ppm groups. Repeated inhalation exposure of rats to 200 or 400 ppm divinylbenzene-HP produced a minimal or mild rhinitis in both sexes. Microscopic lesions attributed to divinylbenzene-HP exposure were not observed in the lung, liver, or kidney of rats. Mice were more susceptible than rats to divinylbenzene-HP toxicity. Two of five mice of both sexes exposed to 200 ppm, and all mice exposed to 400 ppm died during the 2-week study. As was observed in the rat, the nasal cavity, liver, and kidney were identified as potential target sites for divinylbenzene-HP. Liver and kidney weights were mildly increased in male and/or female mice in all exposed groups; however, these increases were not exposure concentration related. Lesions associated with exposure of mice to divinylbenzene-HP varied with exposure concentration and length of survival. Mice exposed to 400 ppm all died early with periportal hepatic degeneration and necrosis of respiratory, transitional, and olfactory epithelium and nasal glands in all levels of the nasal cavity. Mice exposed to 200 ppm had centrilobular hepatic karyomegaly similar to lesions reported for styrene-exposed mice (Morgan *et al.*, 1993; Mahler *et al.*, 1999). A spectrum of renal lesions was seen in the 200 ppm group with tubular necrosis, mineralization, and casts prominent in mice that died early, and tubular regeneration more prominent in survivors. Nasal lesions in the 200 ppm group included those found in the 400 ppm group with the addition of some more chronic changes, squamous metaplasia, glandular hyperplasia, and olfactory atrophy and metaplasia, particularly in the surviving mice. Mice exposed to 100 ppm had minimal to mild changes in the olfactory region of the nose including Bowman's glands. Similar lesions were found in mice exposed to 25 or 50 ppm. Because only mild effects were observed in rats exposed to 25 to 400 ppm divinylbenzene-HP for 2 weeks, the same concentrations were used in the 3-month study. There were no deaths in the 3-month rat study, and only males exposed to 400 ppm had a modest decrease in body weights (10%). Liver and kidney weights were increased in all exposed male groups and in females exposed to 400 ppm. No renal or hepatic lesions were seen in rats. Minimal to mild degeneration and basal cell hyperplasia of olfactory epithelium were present in both sexes after 3 months. The incidence and severity of basal cell hyperplasia were exposure concentration related. The vast majority of degenerative lesions were graded as minimal severity. B6C3F₁ mice were found to be more susceptible than F344/N rats to divinylbenzene-HP in the 2-week study and were exposed to a lower concentration range (12.5, 25, 50, 100, or 200 ppm) for 3 months. Although 200 ppm divinylbenzene-HP caused some mortality in the 2-week study, a previous styrene study demonstrated that mice surviving the initial exposure survived continued exposure and had little evidence of liver toxicity after 3 months. However, in the current 3-month study, mice did not develop resistance to 200 ppm divinylbenzene-HP as observed for styrene. Of the mice exposed to 200 ppm divinylbenzene-HP, all but one died early with centrilobular hepatocellular necrosis and mineralization. Nearly all mice exposed to 200 ppm also had moderate to marked renal tubular necrosis, accompanied by casts and mineralization. In both sexes of mice, the mean final body weights were significantly lower for all groups exposed to 25 ppm or more compared to their respective chamber controls. As was observed in rats, the nasal cavity was a primary target site of inhaled divinylbenzene-HP in mice. Necrosis of olfactory epithelium and associated glands was the prominent nasal lesion in moribund and dead mice exposed to 200 ppm. After 3 months, there was still evidence of olfactory necrosis in mice exposed to 25 ppm or greater. More prominent lesions in those exposed groups were olfactory atrophy and hyaline degeneration, glandular hyperplasia, a mixed inflammatory cell infiltrate, and hyaline degeneration of respiratory epithelium. There was no evidence of reproductive toxicity in male or female rats or mice in the 3-month studies based on sperm motility and vaginal cytology evaluations. The results of these 3-month divinylbenzene-HP studies are consistent with earlier subchronic studies of styrene that demonstrated similar toxicological properties for divinylbenzene-HP and styrene. Both chemicals were more toxic for mice than rats (Roycroft *et al.*, 1992; Morgan *et al.*, 1997) and both caused nasal toxicity and hepatotoxicity in mice (Roycroft *et al.*, 1992; Morgan *et al.*, 1993; 1997). Morgan *et al.* (1997) reported that divinylbenzene-55, a less pure form of divinylbenzene than that used in the current study, was more acutely toxic than a similar concentration of styrene. Similarly, in the current 3-month mouse study, 200 ppm divinylbenzene-HP caused significantly greater mortality than exposure to 250 ppm styrene for 3 months. The species difference in susceptibility to styrene has been attributed to greater epoxidase activity and less epoxide hydrolase activity in mice relative to rats (Glatt and Oesch, 1987). A similar mechanism is likely for this species difference in susceptibility to divinylbenzene-HP. The modest effect on body weight and the slight severity of lesions induced in rats by exposure to divinylbenzene-HP for 3 months indicated that these same concentrations could be used in a chronic study in rats without causing mortality due to
toxicity. In the current 2-year study, male and female rats were exposed to 0, 100, 200, or 400 ppm divinylbenzene-HP. Survival rates were comparable between chamber control and exposed rats (61%-70%), except the 400 ppm females in which the survival (44%) was significantly reduced. Mean body weights among surviving 400 ppm males and females were significantly lower than the chamber controls at terminal sacrifice. As observed in the 3-month mouse study, the kidney also was a target site for divinylbenzene-HP in the 2-year rat study. Marginal increases in renal tubule carcinoma were diagnosed in male rats exposed to 400 ppm. Although not statistically significant relative to concurrent chamber controls, the incidence of renal tubule carcinoma exceeded the historical control incidence. A statistically significant increase in the incidence of chronic nephropathy and increased severity of renal tubule hyperplasia were also present in male rats exposed to 400 ppm divinylbenzene-HP. In the kidney, renal tubule hyperplasia, adenoma, and carcinoma are thought to represent a continuum in the progression of proliferative lesions. Because of the marginally increased incidence of carcinoma and the advanced renal tubule hyperplasia in the 400 ppm group, an extended evaluation (step sectioning) of the kidney was performed in the males. In the extended evaluation, renal tubule adenomas were identified in two 200 ppm and one 400 ppm males; no additional renal tubule carcinomas were identified. However, the incidences of adenoma, carcinoma, and adenoma or carcinoma (combined) in the exposed groups were not statistically significant relative to concurrent or historical controls for 2-year inhalation studies. Based upon these results, a clear relationship between kidney neoplasms and divinylbenzene-HP exposure could not be determined. The incidences of basal cell adenoma of the skin were slightly increased in male rats exposed to 200 or 400 ppm divinylbenzene-HP. Basal cell adenomas were composed predominantly of basal cells or a mixture of sebaceous and keratinizing squamous epithelium, often forming cysts. The basal cell adenomas were not accompanied by any carcinomas, and their slightly increased incidences were within the range for historical controls by all routes of administration; thus they were not considered related to exposure to divinylbenzene-HP. The brain was a potential target site for divinylbenzene-HP in rats. Incidences of malignant astrocytoma in 200 ppm males and females and malignant oligodendroglioma in 100 and 200 ppm males were not significantly greater than those in the concurrent chamber controls but exceeded the historical ranges in chamber control rats. The incidences of malignant astrocytoma or malignant oligodendroglioma (combined) were slightly increased in 100 and 200 ppm males, and the incidence in the 200 ppm group exceeded the historical incidence for chamber controls. Although the incidence of these malignant glial cell neoplasms did not increase with increasing exposure concentration, an association with exposure to divinylbenzene-HP could not be excluded, and these neoplasms were therefore considered an equivocal finding. As observed in 3-month study, the nasal cavity was a major target site for divinylbenzene-HP in the 2-year study in rats. Inhalation exposure to divinylbenzene-HP for up to 105 weeks induced nonneoplastic lesions including degeneration and basal cell hyperplasia of the nasal olfactory epithelium and dilatation of adjacent Bowman's glands. These lesions were mostly minimal to mild in severity and reflect the cytotoxic and regenerative responses reported in the 3-month study and in short-term inhalation studies of divinylbenzene-55 by Morgan *et al.* (1997). Similar nasal lesions were reported in rats after a 2-year inhalation exposure to styrene (Cruzan *et al.*, 1998). Olfactory lesions were observed after exposure to 50 ppm styrene or greater. The incidence and severity of epithelial degeneration in the current study were comparable between sexes and among all divinylbenzene-HP exposure concentrations, while the incidences (both sexes) of basal cell hyperplasia and glandular dilatation were lower at the 100 ppm level relative to the higher exposure concentrations. There was also an exposure concentration related increase in goblet cell hyperplasia among males. This response has been attributed to the direct irritant properties to divinylbenzene-HP (Alarie, 1981; De Ceaurriz *et al.*, 1981; Alarie *et al.*, 1995). Based on the results of the 3-month studies, mice were exposed to divinylbenzene-HP concentrations of 0, 10, 30, or 100 ppm for 2 years. Survival of all exposed groups of mice was similar to that of the chamber controls. The lung was a target organ of divinylbenzene-HP exposure in mice but not in rats. In the lungs of male mice exposed to 100 ppm divinylbenzene-HP, the incidences of alveolar/bronchiolar adenoma and alveolar/bronchiolar adenoma or carcinoma (combined) were marginally greater than those in concurrent controls and were at or above the upper end of the historical ranges for chamber controls. In exposed female mice, the incidences of alveolar/bronchiolar adenoma and alveolar/bronchiolar adenoma or carcinoma (combined) were generally increased and exceeded the historical control ranges, although the increases were not statistically significant and did not increase with increasing exposure concentration. Lung tumors were also reported in a 2-year inhalation exposure of CD-1 mice to styrene (20, 40, 80, or 160 ppm) (Cruzan *et al.*, 2001). Styrene inhalation caused an increased incidence of pulmonary adenomas in male and female mice and an increase in alveolar/bronchiolar carcinomas in female mice exposed to 160 ppm. As in the current study of divinylbenzene-HP, the lung was not a target for styrene in the rat. In the current study, divinylbenzene-HP also caused a number of nonneoplastic lesions in the mouse lung. Atypical bronchiolar hyperplasia was present in all exposed male and female mice. The incidences and severity of this lesion increased with increasing exposure concentration. The atypical bronchiolar hyperplasia was characterized by enlarged karyomegalic cells that were piled up and occasionally formed intralumenal papillary projections. Alveolar epithelial hyperplasia was increased in all exposed groups of males and reached statistical significance in the 100 ppm group. The incidence of alveolar epithelial hyperplasia was marginally increased in 100 ppm females, and the severity of the lesion increased in the 30 and 100 ppm groups. A progression of nonneoplastic effects was observed in the lungs of CD-1 mice exposed to styrene for 2 years (Cruzan *et al.*, 2001). Lung lesions progressed from decreased eosinophilia of the epithelium of the terminal bronchioles (52 weeks) to hyperplasia of the terminal bronchiolar epithelium (78 weeks) and finally to hyperplasia extending into the alveolar ducts (104 weeks). A single incidence of olfactory epithelium neuroblastoma occurred in 100 ppm female mice. Although this lesion was marginal and did not involve bone, this lesion has not been observed in historical chamber control female mice. Incidences of nonneoplastic nasal lesions were significantly increased in exposed mice and were similar to those observed in exposed rats. Suppurative inflammation and metaplasia of the respiratory epithelium of Bowman's glands and olfactory epithelium were present in all exposed mice, and the severity of these lesions increased with increasing divinylbenzene-HP exposure concentration. Styrene inhalation has been shown to cause similar nonneoplastic lesions in the nasal cavity of rats and mice (Roycroft *et al.*, 1992; Morgan *et al.*, 1993; Cruzan *et al.*, 2001). Pretreatment of mice with an inhibitor of P450 CYP2E1 and CYP2F completely prevented the nasal lesions caused by styrene. These data indicate that a metabolite of styrene (e.g., styrene oxide) and not styrene was responsible for nasal toxicity (Green *et al.*, 2001b). A similar mechanism may explain the nasal toxicity of divinylbenzene-HP. #### **CONCLUSIONS** Under the conditions of this 2-year inhalation study, there was *equivocal evidence of carcinogenic activity** of divinylbenzene-HP in male F344/N rats based upon the occurrence of carcinomas in the kidney and glial tumors in the brain. There was *no evidence of carcinogenic activity* in female F344/N rats exposed to 100, 200, or 400 ppm divinylbenzene-HP. There was *no evidence of carcinogenic activity* in male B6C3F₁ mice exposed to 10, 30, or 100 ppm divinylbenzene-HP. There was *equivocal evidence of carcinogenic activity* of divinylbenzene-HP in female B6C3F₁ mice based on the incidences of alveolar/bronchiolar adenoma or carcinoma (combined) in the lung. Exposure to divinylbenzene-HP caused nonneoplastic lesions in the nasal cavity of male and female rats including degeneration of the olfactory epithelium and basal cell epithelial hyperplasia. Nonneoplastic lesions were observed in the lung and nasal cavity of exposed mice. Atypical bronchiolar hyperplasia and hyperplasia of the alveolar epithelium were observed in lung of male and female mice. In the nasal cavity of mice, suppurative inflammation, metaplasia of the respiratory and olfactory epithelium, and degeneration of the olfactory epithelium were present at all concentrations. ^{*} Explanation of Levels of Evidence of Carcinogenic Activity is on page 12. # REFERENCES Alarie, Y. (1981). Dose-response analysis in animal studies: Prediction of human response. *Environ. Health Perspect.* **42**, 9. Alarie, Y., Nielsen, G.D., Andonian-Haftvan, J., and Abraham, M.H. (1995). Physicochemical properties of nonreactive volatile organic chemicals to estimate RD50: Alternative to animal studies. *Toxicol. Appl. Pharmacol.* **134**, 92-99. The Aldrich Library of FT-1R Spectra (1997). 2nd ed. Sigma-Aldrich Chemical Co., Milwaukee, WI. American Conference
of Governmental Industrial Hygienists (ACGIH) (2004). 2004 TLVs® and BEIs®. Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices, p. 27. Cincinnati, OH. Ashby, J., and Tennant, R.W. (1991). Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP. *Mutat. Res.* **257**, 229-306. Bailer, A.J., and Portier, C.J. (1988). Effects of treatment-induced mortality and tumor-induced mortality on tests for carcinogenicity in small samples. *Biometrics* **44**, 417-431. Bieler, G.S., and Williams, R.L. (1993). Ratio estimates, the delta method, and quantal response tests for increased carcinogenicity. *Biometrics* **49**, 793-801. Boorman, G.A., Montgomery, C.A., Jr., Eustis, S.L., Wolfe, M.J., McConnell, E.E., and Hardisty, J.F. (1985). Quality assurance in pathology for rodent carcinogenicity studies. In *Handbook of Carcinogen Testing* (H.A. Milman and E.K. Weisburger, Eds.), pp. 345-357. Noves Publications, Park Ridge, NJ. Carlson, G.P. (1997). Effects of inducers and inhibitors on the microsomal metabolism of styrene to styrene oxide in mice. *J. Toxicol. Environ. Health* **51**, 477-488. Code of Federal Regulations (CFR) 21, Part 58. Coulter, K.E., and Kedhe, H. (1970). Styrene Polymers (monomers). In *Encyclopedia of Polymer Science Technology* (N.M. Bikales, Ed.), Vol. 13, pp. 147-149. John Wiley and Sons, New York. Cox, D.R. (1972). Regression models and life-tables. J. R. Stat. Soc. B34, 187-220. Crawford, B.D. (1985). Perspectives on the somatic mutation model of carcinogenesis. In *Advances in Modern Environmental Toxicology. Mechanisms and Toxicity of Chemical Carcinogens and Mutagens* (M.A. Mehlman, W.G. Flamm, and R.J. Lorentzen, Eds.), pp. 13-59. Princeton Scientific Publishing Co., Inc., Princeton, NJ. Cruzan, G., Cushman, J.R., Andrews, L.S., Granville, G.C., Johnson, K.A., Hardy, C.J., Coombs, D.W., Mullins, P.A., and Brown, W.R. (1998). Chronic toxicity/oncogenicity study of styrene in CD rats by inhalation exposure for 104 weeks. *Toxicol. Sci.* **46**, 266-281. Cruzan, G., Cushman, J.R., Andrews, L.S., Granville, G.C., Johnson, K.A., Bevan, C., Hardy, C.J., Coombs, D.W., Mullins, P.A., and Brown, W.R. (2001). Chronic toxicity/carcinogenicity study of styrene in CD-1 mice by inhalation exposure for 104 weeks. *J. Appl. Toxicol.* **21**, 185-198. De Ceaurriz et al., (1981) Dixon, D., Herbert, R.A., Sills, R.C., and Boorman, G.A. (1999). Lungs, pleura, and mediastinum. In *Pathology of the Mouse* (R.R. Moronpot, Ed.), pp. 293-332. Cache River Press, Vienna, IL. Dixon, W.J., and Massey, F.J., Jr. (1957). *Introduction to Statistical Analysis*, 2nd ed., pp. 276-278, 412. McGraw-Hill Book Company, Inc., New York. Dunn, O.J. (1964). Multiple comparisons using rank sums. Technometrics 6, 241-252. Dunnett, C.W. (1955). A multiple comparison procedure for comparing several treatments with a control. *J. Am. Stat. Assoc.* **50**, 1096-1121. Elwell, M.R., Dunnick, J.K., Hailey, J.R., and Haseman, J.K. (1996). Chemical associated with decreases in the incidence of mononuclear cell leukemia in the Fischer rat. *Toxicol. Pathol.* **24**, 238-245. Federation of Societies for Coatings Technology (FSCT) (1991). *An Infrared Spectroscopy Atlas for the Coatings Industry*, Federation of Societies for Coating Technology, Blue Bell, PA. Glatt, H.R., and Oesch, F. (1987). Species differences in enzymes controlling reactive epoxides. *Arch. Toxicol. Suppl.* **10**, 111-124. Green, T., Toghill, A., and Foster, J. (2001a). The role of cytochrome P-450 in styrene-induced pulmonary toxicity and carcinogenicity in the mouse. *Toxicology* **169**, 107-117. Green, T., Lee, R., Toghill, A., Meadowcroft, S., Lund, V., and Foster, J. (2001b). The toxicity of styrene to the nasal epithelium of mice and rats: Studies on the mode of action and relevance to humans. *Chem. Biol. Interact.* **137**, 185-202. Haseman, J.K., Young, E., Eustis, S.L., and Hailey, J.R. (1997). Body weight-tumor incidence correlations in long-term rodent carcinogenicity studies. *Toxicol. Pathol.* **25**, 256-263. Haseman, J.K., Hailey, H.R., and Morris, R.W. (1998). Spontaneous neoplasm incidences in Fischer 344 rats and B6C3F₁ mice in two-year carcinogenicity studies: A National Toxicology Program update. *Toxicol Pathol.* **26**, 428-441. Hazardous Substance Data Bank (HSDB) (2005). National Institute for Occupational Safety and Health, HSDB database available through the National Library of Medicine TOXNET System. Hollander, M., and Wolfe, D.A. (1973). *Nonparametric Statistical Methods*, pp. 120-123. John Wiley and Sons, New York. Integrated Laboratory Systems (ILS) (1990). Micronucleus Data Management and Analysis Software, Version 1.4. ILS, Research Triangle Park, NC. International Agency for Research on Cancer (IARC) (1987). *IARC Monographs on the Evaluation of Carcinogenic Risk to Humans*, Vols. 1-42, Supplement 7, pp. 345-347. International Agency for Research on Cancer, Lyon, France. International Agency for Research on Cancer (IARC) (2002). *IARC Monographs on the Evaluation of Carcinogenic Risk to Humans*, Vol. 82, pg. 437. Styrene (Group 2B). International Agency for Research on Cancer, Lyon, France. Jeffcoat, A.R. (1999). Comparative Metabolism of [¹⁴C]m-Divinylbenzene (mDVB) in Liver Tissue Slices from Rats, Mice, and Humans. Research Triangle Institute. Project Report No. 05. NIEHS Contract No. N01-ES-75407, March 5, 1999. Jeffcoat, A.R., Slauter, R.W., Slaughter, S.J., and Matthews, H.B. (1990). m-Divinylbenzene: Disposition after oral and intravenous administration to rats. *Eur. J. of Pharmacol.* **183**, 1503. Jonckheere, A.R. (1954). A distribution-free k-sample test against ordered alternatives. Biometrika 41, 133-145. Kaplan, E.L., and Meier, P. (1958). Nonparametric estimation from incomplete observations. *J. Am. Stat. Assoc.* **53**, 457-481. *Kirk-Othmer Encyclopedia of Chemical Technology* (1981). 3rd ed. (M. Grayson and D. Eckroth, Eds.), Vol. 13, pp. 685-705. John Wiley & Sons, New York. *Kirk-Othmer Encyclopedia of Chemical Technology* (1983). 3rd ed. (M. Grayson and D. Eckroth, Eds.), Vol. 21, pp. 769-799. John Wiley & Sons, New York. Kligerman, A.D., Morgan, D.L., Doerr, C.L., Milholland, V., and Tennant, A.H. (1996). Cytogenetic effects in mice of divinylbenzene inhalation. *Mutat. Res.* **370**, 107-113. Knaap, A.G.A., Voogd, C.E., and Kramers, P.G.N. (1985). Mutagenicity of Vinyl Compounds. *Mutat. Res.* **147**, 303. Linhart, I., Hanuš, V., Novák, J., Šmejkal, J., and Pech, P. (1989). Biotransformation of diethenylbenzenes. V. Identification of urinary metabolites of 1,2-diethenylbenzene in the rat. *Xenobiotica* **26**, 1263-1272. Linhart, I., Mitera, J., Vosmanská, W., Šmejkal, J., and Pech, P. (1992). Biotransformation of diethenylbenzenes. I. Identification of the main urinary metabolites of 1,4-diethenylbenzene in the rat. *Xenobiotica* **19**, 645-653. Linhart, I., Weidenhoffer, Z., Sedmera, P., Polášek, M., and Šmejkal, J. (1996). Biotransformation of diethenylbenzenes. V. Identification of urinary metabolites of 1,2-diethenylbenzene in the rat. *Xenobiotica* **26**, 1263-1272. McConnell, E.E., Solleveld, H.A., Swenberg, J.A., and Boorman, G.A. (1986). Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. *JNCI* **76**, 283-289. MacGregor, J.T., Wehr, C.M., Henika, P.R., and Shelby, M.D. (1990). The *in vivo* erythrocyte micronucleus test: Measurement at steady state increases assay efficiency and permits integration with toxicity studies. *Fundam. Appl. Toxicol.* **14**, 513-522. Mahler, J.F., Price, H.C., O'Connor, R.W., Wilson, R.E., Eldridge, S.R., Moorman, M.P., and Morgan, D.L. (1999). Characterization of hepatocellular resistance and susceptibility to styrene toxicity in B6C3F1 mice. *Toxicol. Sci.* **48**, 123-133. Maronpot, R.R., and Boorman, G.A. (1982). Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. *Toxicol. Pathol.* **10**, 71-80. Miller, J.A., and Miller, E.C. (1977). Ultimate chemical carcinogens as reactive mutagenic electrophiles. In *Origins of Human Cancer* (H.H. Hiatt, J.D. Watson, and J.A. Winsten, Eds.), pp. 605-627. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. Morgan, D.L., Mahler, J.F., O'Connor, R.W., Price, H.C., and Adkins, B. (1993). Styrene inhalation toxicity studies in mice. I. Hepatotoxicity in B6C3F1 mice. *Fundam. Appl. Toxicol.* **20**, 325-335. Morgan, D.L., Mahler, J.F., Wilson, R.E., Moorman, M.P., Price, H.C., Jr., and O'Connor, R.W. (1997). Toxicity of divinylbenzene-55 for B6C3F₁ mice in a two-week study. *Fundam. Appl. Toxicol.* **39**, 89-100. Morrison, D.F. (1976). *Multivariate Statistical Methods*, 2nd ed., pp. 170-179. McGraw-Hill Book Company, New York. Nakajima, T., Wang, R.S., Elovaara, E., Gonzalez, F.J., Gelboin, H.V., Vainio, H., and Aoyama, T. (1994). CYP2C11 and CYP2B1 are major cytochrome p-450 forms involved in styrene oxidation in liver and lung microsomes from untreated rats, respectively. *Biochem. Pharmacol.* **48**, 637-642. National Institute of Standards and Technology (NIST) (1994). Mass Spectral Database. Standard Reference Database 1A. Standard Reference Data Program. National Institute of Standards and Technology. Gaithersburg, MD. National Institute of Standards and Technology (NIST) (1995a). Mass Spectral Database. Standard Reference Database 1A (PC Version, entry 5569). Standard Reference Data Program. National Institute of Standards and Technology. Gaithersburg, MD. National Institute of Standards and Technology (NIST) (1995b). Mass Spectral Database. Standard Reference Database 1A (PC Version, entry 5568). Standard Reference Data Program. National Institute of Standards and Technology. Gaithersburg, MD. National Toxicology Program (NTP) (1999). Toxicology and Carcinogenesis Studies of Furfuryl Alcohol (CAS No.
98-00-0) in F344/N Rats and B6C3F₁ Mice (Inhalation Studies). Technical Report Series No. 482. NIH Publication No. 99-3972. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. National Toxicology Program (NTP) (2000). Toxicology and Carcinogenesis Studies of Naphthalene (CAS No. 91-20-3) in F344/N Rats (Inhalation Studies). Technical Report Series No. 500. NIH Publication No. 01-4434. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. Patty's Industrial Hygiene and Toxicology (1981). 3rd Revised ed. (G.D. Clayton, and F.E. Clayton, Eds.), Vol. 2, pp. 3257, 3321, 3323. John Wiley and Sons, New York. Piegorsch, W.W., and Bailer, A.J. (1997). *Statistics for Environmental Biology and Toxicology*, Section 6.3.2. Chapman and Hall, London. Portier, C.J., and Bailer, A.J. (1989). Testing for increased carcinogenicity using a survival-adjusted quantal response test. *Fundam. Appl. Toxicol.* **12**, 731-737. Portier, C.J., Hedges, J.C., and Hoel, D.G. (1986). Age-specific models of mortality and tumor onset for historical control animals in the National Toxicology Program's carcinogenicity experiments. *Cancer Res.* **46**, 4372-4378. Rao, G.N. (1996). New diet (NTP-2000) for rats in the National Toxicology Program toxicity and carcinogenicity studies. *Fundam. Appl. Toxicol.* **32**, 102-108. Rao, G.N. (1997). New nonpurified diet (NTP-2000) for rodents in the National Toxicology Program's toxicology and carcinogenesis studies. *J. Nutr.* **127**, 842s-846s. Research Triangle Institute (RTI) (1999). Bulk Chemical Inhalation Report, Divinylbenzene-HP (80%). CHEM04664. Research Triangle Institute, Research Triangle Park, NC. Roycroft, J.H., Mast, T.J., Ragan, H.A., Grumbein, S.L., Miller, R.A., and Chou, B.J. (1992). Toxicological effects of inhalation exposure to styrene in rats and mice. *Toxicologist* 12, 397. Shelby, M.D. (1988). The genetic toxicity of human carcinogens and its implications. *Mutat. Res.* 204, 3-15. Shelby, M.D., and Witt, K.L. (1995). Comparison of results from mouse bone marrow chromosome aberration and micronucleus tests. *Environ. Mol. Mutagen.* **25**, 302-313. Shelby, M.D., and Zeiger, E. (1990). Activity of human carcinogens in the *Salmonella* and rodent bone-marrow cytogenetics tests. *Mutat. Res.* **234**, 257-261. Shelby, M.D., Erexson, G.L., Hook, G.J., and Tice, R.R. (1993). Evaluation of a three-exposure mouse bone marrow micronucleus protocol: Results with 49 chemicals. *Environ. Mol. Mutagen.* **21**, 160-179. Shirley, E. (1977). A non-parametric equivalent of Williams' test for contrasting increasing dose levels of a treatment. *Biometrics* **33**, 386-389. Straus, D.S. (1981). Somatic mutation, cellular differentiation, and cancer causation. JNCI 67, 233-241. Stromberg, P.C., Rojko, J.L., Vogtsberger, L.M., Cheney, C., and Berman, R. (1983). Immunologic, biochemical, and ultrastructural characterization of the leukemia cell in F344 rats. *J. Natl. Cancer Inst.* **71**, 173-181. Tarone, R.E. (1975). Tests for trend in life table analysis. *Biometrika* 62, 679-682. Tennant, R.W., Margolin, B.H., Shelby, M.D., Zeiger, E., Haseman, J.K., Spalding, J., Caspary, W., Resnick, M., Stasiewicz, S., Anderson, B., and Minor, R. (1987). Prediction of chemical carcinogenicity in rodents from *in vitro* genetic toxicity assays. *Science* **236**, 933-941. Williams, D.A. (1971). A test for differences between treatment means when several dose levels are compared with a zero dose control. *Biometrics* **27**, 103-117. Williams, D.A. (1972). The comparison of several dose levels with a zero dose control. *Biometrics* 28, 519-531. Williams, D.A. (1986). A note on Shirley's nonparametric test for comparing several dose levels with a zero-dose control. *Biometrics* **42**, 183-186. Witt, K.L., Knapton, A., Wehr, C.M., Hook, G.J., Mirsalis, J., Shelby, M.D., and MacGregor, J.T. (2000). Micronucleated erythrocyte frequency in peripheral blood of B6C3F₁ mice from short-term, prechronic, and chronic studies of the NTP Carcinogenesis Bioassay Program. *Environ. Mol. Mutagen.* **36**, 163-194. Zeiger, E., Anderson, B., Haworth, S., Lawlor, T., Mortelmans, K., and Speck, W. (1987). *Salmonella* mutagenicity tests: III. Results from the testing of 255 chemicals. *Environ. Mutagen.* **9** (Suppl. 9), 1-110. Zeiger, E., Haseman, J.K., Shelby, M.D., Margolin, B.H., and Tennant, R.W. (1990). Evaluation of four *in vitro* genetic toxicity tests for predicting rodent carcinogenicity: Confirmation of earlier results with 41 additional chemicals. *Environ. Mol. Mutagen.* **16** (Suppl. 18), 1-14. # APPENDIX A SUMMARY OF LESIONS IN MALE RATS IN THE 2-YEAR INHALATION STUDY OF DIVINYLBENZENE-HP | TABLE A1 | Summary of the Incidence of Neoplasms in Male Rats | | |-----------|--|------| | | in the 2-Year Inhalation Study of Divinylbenzene-HP | A-2 | | TABLE A2 | Individual Animal Tumor Pathology of Male Rats | | | | in the 2-Year Inhalation Study of Divinylbenzene-HP | A-6 | | TABLE A3 | Statistical Analysis of Primary Neoplasms in Male Rats | | | | in the 2-Year Inhalation Study of Divinylbenzene-HP | A-32 | | TABLE A4a | Historical Incidence of Renal Tubule Neoplasms in Control Male F344/N Rats | A-35 | | TABLE A4b | Historical Incidence of Brain Neoplasms in Control Male F344/N Rats | A-36 | | TABLE A5 | Summary of the Incidence of Nonneoplastic Lesions in Male Rats | | | | in the 2-Year Inhalation Study of Divinylbenzene-HP | A-37 | $TABLE\ A1 \\ Summary\ of\ the\ Incidence\ of\ Neoplasms\ in\ Male\ Rats\ in\ the\ 2-Year\ Inhalation\ Study\ of\ Divinylbenzene-HP^a$ | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |--|------------------------|---------|---------|----------------| | Disposition Summary | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Early deaths | | | | | | Moribund | 15 | 9 | 12 | 13 | | Natural deaths | 4 | 6 | 6 | 5 | | Survivors | | | | | | Died last week of the study | | | 1 | | | Terminal sacrifice | 31 | 35 | 31 | 32 | | Animals examined microscopically | 50 | 50 | 50 | 50 | | Alimantary Systam | | | | | | Alimentary System Intestine large, rectum | (48) | (48) | (48) | (49) | | Adenoma | (40) | 1 (2%) | (40) | (47) | | Polyp adenomatous | | 1 (2/0) | 1 (2%) | | | Intestine large, cecum | (47) | (48) | (46) | (49) | | Polyp adenomatous | (17) | 1 (2%) | (10) | (17) | | Intestine small, jejunum | (46) | (47) | (47) | (46) | | Histiocytic sarcoma, metastatic, mesentery | 1 (2%) | · / | , | , , | | Intestine small, ileum | (46) | (47) | (45) | (46) | | Fibrosarcoma | | | | 1 (2%) | | Liver | (50) | (49) | (50) | (50) | | Carcinoma, metastatic, islets, pancreatic | | | | 1 (2%) | | Fibrous histiocytoma, metastatic, skin | | 1 (2%) | | 1 (2%) | | Osteosarcoma, metastatic, bone | 1 (2%) | | | | | Osteosarcoma, metastatic, | | 1 (20/) | | | | uncertain primary site | | 1 (2%) | | | | Pheochromocytoma malignant, metastatic, | | | 1 (20/) | | | adrenal medulla
Mesentery | (12) | (12) | 1 (2%) | (11) | | Carcinoma, metastatic, kidney | (12) | (13) | (18) | (11)
1 (9%) | | Histiocytic sarcoma | 1 (8%) | | | 1 (970) | | Leiomyosarcoma, metastatic, stomach, | 1 (670) | | | | | glandular | 1 (8%) | | | | | Oral mucosa | (1) | | (1) | (4) | | Pharyngeal, squamous cell papilloma | () | | () | 1 (25%) | | Pancreas | (50) | (49) | (50) | (50) | | Carcinoma, metastatic, kidney | | | | 1 (2%) | | Fibrous histiocytoma, metastatic, skin | | 1 (2%) | | | | Histiocytic sarcoma, metastatic, mesentery | 1 (2%) | | | | | Leiomyosarcoma, metastatic, stomach, | | | | | | glandular | 1 (2%) | | | | | Acinus, adenoma | (50) | (40) | (50) | 1 (2%) | | Stomach, forestomach | (50) | (48) | (50) | (50) | | Histocytic sarcoma, metastatic, mesentery | 1 (2%) | (40) | (50) | (40) | | Stomach, glandular
Leiomyosarcoma | (50)
1 (2%) | (48) | (50) | (49) | | Tongue | 3 7 | (1) | | | | Squamous cell papilloma | (1)
1 (100%) | (1) | | | | Cardiovascular System | | | | | | Blood vessel | (50) | (50) | (50) | (50) | | Heart | (50) | (50) | (50) | (50) | TABLE A1 Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |--|------------------------|-----------|-----------|-----------| | Endocrine System | | | | | | Adrenal cortex | (50) | (50) | (50) | (50) | | Carcinoma, metastatic, kidney | (30) | (50) | (50) | 1 (2%) | | Osteosarcoma, metastatic, bone | | 1 (2%) | | 1 (270) | | Adrenal medulla | (50) | (50) | (50) | (50) | | Osteosarcoma, metastatic, bone | 1 (2%) | (50) | (50) | (30) | | Pheochromocytoma malignant | 1 (2%) | 2 (4%) | 2 (4%) | 1 (2%) | | Pheochromocytoma benign | 12 (24%) | 3 (6%) | 8 (16%) | 7 (14%) | | Bilateral, pheochromocytoma benign | 12 (24/0) | 1 (2%) | 1 (2%) | / (1470) | | Islets, pancreatic | (50) | (48) | (50) | (50) | | Adenoma | 5 (10%) | 8 (17%) | 2 (4%) | 9 (18%) | | Carcinoma | 1 (2%) | 0 (1770) | 1 (2%) | 1 (2%) | | Pituitary gland | (50) | (50) | (50) | (49) | | Pars distalis, adenoma | 36 (72%) | 30 (60%) | 31 (62%) | 29 (59%) | | Pars distalis, ganglioneuroma | 30 (7270) | 30 (0070) | 31 (02/0) | 1 (2%) | | Pars intermedia, adenoma | | 2 (4%) | | 1 (2/0) | | Thyroid gland | (50) | (50) | (50) | (49) | | C-cell, adenoma | ` / | () | ` / | ` / | | C-cell, carcinoma | 2 (4%)
1 (2%) | 5 (10%) | 2 (4%) | 2 (4%) | | Follicular cell, adenoma | 1 (2%) | | | 1 (2%) | | Tomediai cen, adenoma | 1 (270) | | | | | General Body System | | | | | | Peritoneum | (40) | (49) | (50) | (49) | | Carcinoma, metastatic, kidney | | | | 1 (2%) | | Histiocytic sarcoma, metastatic, mesentery | 1 (3%) | | | | | Genital System | | | | | | Epididymis | (50) | (50) | (50) |
(50) | | Preputial gland | (48) | (50) | (50) | (49) | | Adenoma | () | 1 (2%) | (==) | 1 (2%) | | Carcinoma | | 1 (2%) | | 1 (2%) | | Prostate | (50) | (50) | (50) | (50) | | Carcinoma, metastatic, kidney | (50) | (50) | (50) | 1 (2%) | | Histiocytic sarcoma, metastatic, mesentery | 1 (2%) | | | . (2/0) | | Seminal vesicle | (50) | (49) | (50) | (50) | | Carcinoma, metastatic, kidney | (30) | (47) | (50) | 1 (2%) | | Histiocytic sarcoma, metastatic, mesentery | 1 (2%) | | | 1 (2/0) | | Testes | (50) | (50) | (50) | (50) | | Bilateral, interstitial cell, adenoma | 20 (40%) | 32 (64%) | 27 (54%) | 32 (64%) | | Interstitial cell, adenoma | 18 (36%) | 13 (26%) | 16 (32%) | 10 (20%) | | incisuuai cen, auchoma | 10 (3070) | 13 (2070) | 10 (3270) | 10 (2070) | TABLE A1 Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |--|------------------------|---------|---------|---------| | Hematopoietic System | | | | | | Bone marrow | (50) | (50) | (50) | (50) | | Fibrous histiocytoma, metastatic, skin | . , | 1 (2%) | , | | | Lymph node | (11) | (5) | (11) | (6) | | Lymph node, bronchial | (7) | (6) | (12) | (5) | | Lymph node, mesenteric | (49) | (49) | (50) | (50) | | Carcinoma, metastatic, kidney | . , | · / | ` / | 1 (2%) | | Sarcoma | 1 (2%) | | | | | Lymph node, mediastinal | (19) | (23) | (25) | (38) | | Carcinoma, metastatic, kidney | | (-) | | 1 (3%) | | Spleen | (50) | (49) | (50) | (50) | | Carcinoma, metastatic, kidney | (4.5) | () | (5.5) | 1 (2%) | | Fibrous histiocytoma, metastatic, skin | | 1 (2%) | | 1 (2%) | | Histiocytic sarcoma, metastatic, mesentery | 1 (2%) | - (=/v) | | - (=/v) | | Thymus | (48) | (44) | (46) | (42) | | y | (, | (, | | (/ | | Integumentary System | | | | | | Mammary gland | (35) | (43) | (47) | (48) | | Adenoma, multiple | | 1 (2%) | | | | Carcinoma | 1 (3%) | | 1 (2%) | | | Fibroadenoma | 1 (3%) | | 5 (11%) | 1 (2%) | | Fibroadenoma, multiple | | | | 1 (2%) | | Skin | (50) | (50) | (50) | (50) | | Basal cell adenoma | | | 1 (2%) | 3 (6%) | | Squamous cell papilloma | 1 (2%) | | • • | | | Trichoepithelioma | 1 (2%) | | | | | Subcutaneous tissue, fibroma | 5 (10%) | 7 (14%) | 4 (8%) | 3 (6%) | | Subcutaneous tissue, fibrous histiocytoma | ` / | 1 (2%) | . , | 1 (2%) | | Subcutaneous tissue, fibrous histiocytoma, | | ` / | | , , | | multiple | 1 (2%) | | | | | Subcutaneous tissue, lipoma | 1 (2%) | 1 (2%) | 1 (2%) | | | Subcutaneous tissue, myxoma | (' ') | | | 1 (2%) | | | | | | | | Musculoskeletal System | | () | (-0) | (==) | | Bone | (50) | (50) | (50) | (50) | | Femur, osteosarcoma | | 1 (2%) | | | | Pelvis, femur, osteosarcoma | 1 (2%) | | | | | Skeletal muscle | (2) | (6) | (1) | (4) | | Carcinoma, metastatic, kidney | | | | 1 (25%) | | Fibrous histiocytoma, metastatic, skin | | 1 (17%) | | | | Osteosarcoma | | 1 (17%) | | | | Nervous System | | | | | | Brain | (40) | (50) | (50) | (50) | | Astrocytoma malignant | (49) | (50) | (50) | (50) | | | | 1 (20/) | 2 (4%) | | | Oligodendroglioma malignant | | 1 (2%) | 1 (2%) | | TABLE A1 Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |--|------------------------|----------|----------|------------------| | Respiratory System | | | | | | Lung | (50) | (50) | (50) | (50) | | Alveolar/bronchiolar adenoma | , | 1 (2%) | · / | ` / | | Alveolar/bronchiolar adenoma, multiple | | | | 1 (2%) | | Alveolar/bronchiolar carcinoma | 1 (2%) | | 1 (2%) | | | Carcinoma, metastatic, kidney | | | | 1 (2%) | | Fibrous histiocytoma, metastatic, skin | 1 (2%) | 1 (2%) | | 1 (2%) | | Histiocytic sarcoma, metastatic, mesentery | 1 (2%) | | | | | Osteosarcoma, metastatic, bone | 1 (2%) | 1 (2%) | | | | Osteosarcoma, metastatic, | | | | | | uncertain primary site | | 1 (2%) | | | | Squamous cell carcinoma | | | 1 (2%) | | | Nose | (50) | (48) | (50) | (49) | | Pleura | (50) | (50) | (50) | (50) | | Histiocytic sarcoma, metastatic, mesentery | 1 (2%) | | | | | Leiomyosarcoma, metastatic, stomach, glar | ndular 1 (2%) | | | | | Special Senses System | | | | | | Zymbal's gland | (1) | | (3) | | | Carcinoma | | | 2 (67%) | | | II win our Creatons | | | | | | Urinary System | (50) | (40) | (50) | (40) | | Kidney | (50) | (49) | (50) | (49) | | Histiocytic sarcoma, metastatic, mesentery | 1 (2%) | | | | | Liposarcoma | 1 (2%) | 1 (20/) | | | | Pelvis, transitional epithelium, carcinoma | 1 (2%) | 1 (2%) | | 2 (49/) | | Renal tubule, carcinoma | (50) | (40) | (50) | 2 (4%) | | Urinary bladder | (50) | (49) | (50) | (49) | | Systemic Lesions | | | | | | Multiple organs ^b | (50) | (50) | (50) | (50) | | Histiocytic sarcoma | 1 (2%) | | | | | Leukemia mononuclear | 22 (44%) | 13 (26%) | 14 (28%) | 10 (20%) | | Mesothelioma malignant | 2 (4%) | 2 (4%) | 1 (2%) | 2 (4%) | | Neoplasm Summary | | | | | | Fotal animals with primary neoplasms ^c | 50 | 49 | 49 | 49 | | Total primary neoplasms | 140 | 130 | 125 | 123 | | Total primary neoplasms Total animals with benign neoplasms | 49 | 49 | 48 | 48 | | Total benign neoplasms | 104 | 107 | 99 | 103 | | Fotal animals with malignant neoplasms | 29 | 20 | 24 | 18 | | Total malignant neoplasms | 36 | 23 | 26 | 20 | | Fotal animals with metastatic neoplasms | 5 | 3 | 1 | 3 | | Total metastatic neoplasms | 19 | 10 | 1 | 15 | | Fotal animals with malignant neoplasms | | = = | = | = = : | | | | | | | a b Number of animals examined microscopically at the site and the number of animals with neoplasm Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 3
5
5 | 0 | 3 | 4 | 6 | 5
8
9 | 8 | 1 | 1 | 2 | 3 | 6 | 7 | 6
7
5 | 8 | 0 | 0 | 7 7
2 2
2 5 | 2 2 | 2 2 | 2 2 | 7 7 2 2 2 9 9 | 2 | 7
2
9 | | |---|-------------|-------------|-------------|-------------|-------------|-------------|---|---|---|---|---|---|---|-------------|---|-----|---|-------------------|-----|-----|----------|---------------|-----|-------------|--| | Carcass ID Number | 0
0
9 | 0
0
2 | 0
1
7 | 0
1
8 | 0
4
1 | 0 | 1 | 3 | | 2 | 3 | 3 | 1 | 0
2
7 | 3 | 5 | 0 | 1 2 | |) 1 | 1 : | 1 | 1 | 0
1
4 | | | Alimentary System | Esophagus | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + | + + | + + | - + | - | + + | + | + | | | Intestine large, colon | + | + | + | + | Α | + | + | + | + | A | + | + | + | + | + | + - | + | + + | + + | - + | - | + + | + | + | | | Intestine large, rectum | + | + | + | + | Α | + | + | + | + | Α | + | + | + | + | + | + - | + | + + | + + | - + | - | + + | + | + | | | Intestine large, cecum | + | + | + | + | Α | | | | | | | | | A | + | + - | + | + + | + + | - + | - | + + | + | + | | | Intestine small, duodenum | + | + | + | + | Α | + | + | + | | Α | | | | + | | + - | + | + + | + + | - + | - | + + | + | + | | | Intestine small, jejunum | + | + | + | + | Α | + | + | + | + | A | + | + | + | Α | + | + / | 4 | + + | + + | - 4 | - | + + | + | + | | | Histiocytic sarcoma, metastatic, mesentery | | | | | | | | | | • | | | | | | - | | | | | | | | | | | Intestine small, ileum | + | + | + | + | Α | + | + | + | + | Α | + | + | + | Α | + | + / | 4 | + + | + + | - + | | + + | + | + | | | Liver | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + | + + | + + | - + | - | + + | + | + | | | Osteosarcoma, metastatic, bone | | | X | Mesentery | | | | | | | | | | | | | | + | + | | + | + | + | - | | + | | | | | Histiocytic sarcoma | Leiomyosarcoma, metastatic, stomach, | glandular | | | | | | | | | | | | | | X | | | | | | | | | | | | | Oral mucosa | Pancreas | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + | + + | + + | - + | | + + | + | + | | | Histiocytic sarcoma, metastatic, mesentery | Leiomyosarcoma, metastatic, stomach, | glandular | | | | | | | | | | | | | | X | | | | | | | | | | | | | Salivary glands | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + | + + | + + | - + | | + + | + | + | | | Stomach, forestomach | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + | + + | + + | - + | | + + | + | + | | | Histiocytic sarcoma, metastatic, mesentery | Stomach, glandular | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + | + + | + + | + + | | + + | + | + | | | Leiomyosarcoma | | | | | | | | | | | | | | X | | | | | | | | | | | | | Tongue | Squamous cell papilloma | Cardiovascular System | Blood vessel | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + | + + | + + | - + | - | + + | + | + | | | Heart Mesothelioma malignant, metastatic, peritoneum | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + | + + | + + | - + | - | - + | . + | + | | I: Insufficient tissue A: Autolysis precludes examination Blank: Not examined TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on
Study | 7
2
9 7
3
0 | 7
3
0 | 7
3
0 | 7
3
0 | 7
3
0 | 7
3
0 | 7
3
1 | |---|-----------------------------| | Carcass ID Number | 0
2
0 | 0
2
1 | 0
2
2 | 0
2
4 | 0
2
5 | 0
2
6 | 0
2
9 | 0
3
3 | 0
3
8 | 0
4
3 | 0
4
6 | 0
4
8 | 0
0
3 | 0
0
4 | 0
3
7 | 0
4
0 | 0
4
5 | 0
4
7 | 0
0
5 | 0
0
7 | 0
3
0 | 0
3
2 | 0
3
6 | 4 | 0
4
9 | Total
Tissues/
Tumors | | Alimentary System | Esophagus | + | 50 | | Intestine large, colon | + | 48 | | Intestine large, rectum | + | 48 | | Intestine large, cecum | + | 47 | | Intestine small, duodenum | + | 48 | | Intestine small, jejunum Histiocytic sarcoma, metastatic, | + | 46 | | mesentery | | | | | | | | | | Χ | | | | | | | | | | | | | | | | 1 | | Intestine small, ileum | + | 46 | | Liver | + | 50 | | Osteosarcoma, metastatic, bone | 1 | | Mesentery | + | | | | | + | | | | + | + | | + | | | + | | | | | | | | | | 12 | | Histiocytic sarcoma Leiomyosarcoma, metastatic, stomach, | | | | | | | | | | X | | | | | | | | | | | | | | | | 1 | | glandular
Oral mucosa | | | | | | | | | | | | | | + | | | | | | | | | | | | 1 | | Pancreas | + | 50 | | Histiocytic sarcoma, metastatic, | ' | | | | | | | | | ' | | | | | ' | ' | | | ' | | | ' | | | ' | 30 | | mesentery | | | | | | | | | | X | | | | | | | | | | | | | | | | 1 | | Leiomyosarcoma, metastatic, stomach, glandular | 1 | | Salivary glands | + | 50 | | Stomach, forestomach
Histiocytic sarcoma, metastatic, | + | 50 | | mesentery | | | | | | | | | | Χ | | | | | | | | | | | | | | | | 1 | | Stomach, glandular
Leiomyosarcoma | + | 50
1 | | Tongue
Squamous cell papilloma | | | | | | | | +
X | | | | | | | | | | | | | | | | | | 1
1 | | Cardiovascular System | Blood vessel | + | 50 | | Heart | + | 50 | | Mesothelioma malignant, metastatic, peritoneum | | | | | | | | | | | X | | | | | | | | | | | | | | | 1 | TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 3
5
5 | 5
0
6 | 5
3
6 | 5
4
3 | 6 | 8 | 8 | 1 | 6 (| 2 | 3 | 6 | | 7 8 | 3 (| 0 (|) 2 | 2 | | 7
2
9 | 7
2
9 | 7
2
9 | 7
2
9 | 7
2
9 | | |---|-------------|-------------|-------------|-------------|---|-----|----|--------|-------------------|-----|-----|---|---|-----|------------|-----|-----|-----|---|-------------|-------------|-------------|-------------|-------------|---| | Carcass ID Number | 0
0
9 | | 1 | 1 | 4 | 0 | 1 | 3 | 0 (
4 :
4 : | 2 | 3 | 3 | 1 | 2 | 3 5 | 5 (|)] | 1 | 2 | 0 | 0
1
0 | 1 | 1 | 0
1
3 | 1 | | Endocrine System | Adrenal cortex | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + | + | + | + | + | + | + | + | + | | Adrenal medulla | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + | + | + | + | + | + | + | + | + | | Osteosarcoma, metastatic, bone
Pheochromocytoma malignant
Pheochromocytoma benign | | | X | | | | | | | v | v | v | | | | | | | v | | | | | v | | | | _ | _ | _ | _ | _ | _ | _ | _ | | | X | | _ | + | μ. | Ψ. | μ. | | X | _ | _ | _ | _ | X | _ | | Islets, pancreatic Adenoma | Т | Т | Т | X | Г | 1" | 1. | 1. | 1 | 1 | 1 | ' | 1 | 1 | | | | | Υ | 1. | | Г | Г | г | 1 | | Carcinoma | | | | Λ | | | | | | | | | | | | | | | 1 | | | | | | | | Parathyroid gland | + | + | + | + | Μ | + | + | + | + | + | + | + | + | + | + . | + - | + | + | + | + | + | + | + | Μ | M | | Pituitary gland | + | + | | | | | | | + | | | | | + | | | + - | | | | | | | + | | | Pars distalis, adenoma | 1 | | X | | ' | X | | | | X | | | | x : | | | | | | | | X | | | X | | Thyroid gland | + | + | + | + | + | | + | + | | + | | | | + | | | | | | | | | | + | | | C-cell, adenoma | C-cell, carcinoma | Follicular cell, adenoma | | | | | | X | General Body System | Peritoneum | + | + | + | + | + | + | + | + | + | | + | + | | | + . | + - | + | | + | + | + | + | + | + | + | | Histiocytic sarcoma, metastatic,
mesentery | , | ' | ' | ' | ' | ' | 1 | | ' | | ' | ' | | | ' | ' | | | | ' | | , | ' | | 1 | | Genital System | Epididymis | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + | + | + | + | + | + | + | + | + | | Preputial gland | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + | + 1 | M | + | + | + | + | + | + | | Prostate | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + | + | + | + | + | + | + | + | + | | Histiocytic sarcoma, metastatic, mesentery | Seminal vesicle | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + | + | + | + | + | + | + | + | + | | Histiocytic sarcoma, metastatic, | mesentery | Testes | + | + | + | + | + | + | + | | | + | + | + | + | + | + - | + | + | + | | + | | | | + | + | | Bilateral, interstitial cell, adenoma
Interstitial cell, adenoma | | | | X | X | | X | X | | X | | | X | | | | | X | | X | X | X | X | X | X | | , | Hematopoietic System | , | | | | | | Bone marrow | | + | + | + | + | + | | | + | + | + | | | | | | | | + | + | + | + | + | + | т | | Lymph node | +
M | 1. / | 1. / | | | 1.1 | | +
M | | N.F | N.T | | + | | + | | + · | | N | 1 /r | ъл | 1.4 | 3.4 | 7.4 | М | | Lymph node, bronchial | | | | | | | | | M I | | | | | | | | | | | | | | | | | | Lymph node, mandibular Lymph node, mesenteric | | | | | | | | | M 1 | | | | | | | | | | | | | | | | | | Sarcoma | Т | Т | Т | Т | Г | 1" | 1. | 1. | 1 | 1 | 1 | ' | 1 | 1 | | | | 1 | 1 | 1. | | Г | Г | г | 1 | | Lymph node, mediastinal | 1.1 | _ | М | М | _ | М | M | М | +] | M | + | м | + | М | _ T | M. | + | + | м | М | М | _ | _ | _ | M | | Spleen | | | | | | | | | + | | | | | | | | | | | | | | | | | | Histiocytic sarcoma, metastatic, mesentery | | | ' | | ' | , | ' | ' | ' | | ' | ' | ' | | | | | ' | ' | | | ' | ' | | • | | Thymus | + | М | + | + | + | + | + | + | + | + | М | + | + | + | + - | + - | + | + | + | + | + | + | + | + | + | | J* | · | 1 | TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 7
2
9 7
3
0 | 7
3
0 | 7
3
0 | 7
3
0 | 7
3
0 | 7
3
0 | 7
3
1 | |--|---------------------------| | Carcass ID Number | 0
2
0 | 0
2
1 | 0
2
2 | 0
2
4 | 0
2
5 | 0
2
6 | 0
2
9 | 0
3
3 | 0
3
8 | 0
4
3 | 0
4
6 | 0
4
8 | 0
0
3 | 0
0
4 | 0
3
7 | 0
4
0 | 0
4
5 | 0
4
7 | 0
0
5 | 0
0
7 | 0
3
0 | 0
3
2 | 3 | 0
4
2 | - | Total
issues/
umors | | Endocrine System | Adrenal cortex | + |
+ | 50 | | Adrenal medulla | + | 50 | | Osteosarcoma, metastatic, bone
Pheochromocytoma malignant | X | 1 | | Pheochromocytoma benign | | | | | | | X | | | X | | | X | | | | | | | | X | | | | X | 12 | | Islets, pancreatic Adenoma | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | +
X | + | + | +
X | | +
X | | 50 | | Carcinoma | | | | | | | 1.1 | | | | | | | | X
+ | | | | | | | | | | | 1 | | Parathyroid gland
Pituitary gland | + + | + | + | + | + | + | M
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 46
50 | | Pars distalis, adenoma | X | | v | X | v | | | v | | | X | X | v | ' | | X | | ' | X | | | Y | X | v | v | 36 | | Thyroid gland | + | + | | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | + | 50 | | C-cell, adenoma | | X | | | · | | · | | · | | | | · | Ċ | | · | · | · | | | | | X | | · | 2 | | C-cell, carcinoma | | 11 | | | | | | | | X | | | | | | | | | | | | | - 1 | | | 1 | | Follicular cell, adenoma | 1 | | General Body System | Peritoneum | | + | | | | + | + | + | | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | 40 | | Histiocytic sarcoma, metastatic, mesentery | | | | | | | | | | X | | | | | | | | | | | | | | | | 1 | | Genital System | Epididymis | + | 50 | | Preputial gland | + | M | + | + | + | + | 48 | | Prostate Histiocytic sarcoma, metastatic, | + | 50 | | mesentery | | | | | | | | | | Χ | | | | | | | | | | | | | | | | 1 | | Seminal vesicle Histiocytic sarcoma, metastatic, | + | 50 | | mesentery
Testes | | | | | | | | | | X
+ | | | | | | | | | | | | | | | | 1 | | Bilateral, interstitial cell, adenoma | + | X | + | X | + | X | v | + | + | | X | v | + | + | + | X | + | X | + | v | X | + | + | v | X | 50
20 | | Interstitial cell, adenoma | X | Λ | X | Λ | X | Λ | Λ | X | | Λ | Λ | Λ | X | X | X | Λ | X | Λ | X | Λ | Λ | X | X | | Λ | 18 | | Hematopoietic System | Bone marrow | + | 50 | | Lymph node | | | | | | | | + | | | + | | | | | | | | - | | | | + | | | 11 | | Lymph node, bronchial | M | M | + | Μ | M | Μ | Μ | | M | Μ | | Μ | Μ | Μ | Μ | Μ | M | Μ | M | M | M | Μ | | | M | 7 | | Lymph node, mandibular | M | 1 | | Lymph node, mesenteric | | | + | + | | | | | | | | + | | | | | | | | | | | | | | 49 | | Sarcoma | | | X | 1 | | Lymph node, mediastinal | | | | | | | | | | | | M | | | | | | | | | | | | | | 19 | | Spleen
Histiocytic sarcoma, metastatic, | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | mesentery | | | | | | | | , | | X | | + | | | | | | | | | | | | | | 1 | | Thymus | + | 48 | TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | | 3 | | | 5 | 5 | 5 | | | 6 | | | | | 6 | | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | |--|---|---|-----|---|---|---|-----|----|---|---|------|----|---|---|-----|-----|----|--------|----|----|-----|-----|-----|---|-----|--| | Number of Days on Study | 5 | | | 4 | | 8 | | 1 | | | | | 7 | 7 | | | 0 | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 5 | 6 | 6 | 3 | 1 | 9 | 9 | 2 | 2 | 3 | 8 | 6 | 0 | 5 | 2 | 1 | 4 | 2 | 5 | 9 | 9 | 9 | 9 | 9 | 9 | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Λ | 0 | 0 | 0 | 0 | 0 | 0 | | | Carcass ID Number | 0 | 0 | | | 4 | 0 | | 0 | | | | | | 0 | | | 0 | 0
1 | 0 | 0 | | 0 | | | | | | curtus ID I (umber | 9 | | | | | | | | | | | | | | | | | 9 | | | | | | | | | | Integumentary System | Mammary gland | + | | м | _ | _ | _ | м | _ | _ | _ | м | _ | _ | _ | м | м | _ | + | _ | _ | м | м | м | _ | м | | | Carcinoma | | - | 111 | т | Т | г | 171 | 1- | 1 | Г | 11/1 | 1. | | 1 | 111 | 1V1 | 1. | ' | 1. | 1" | 171 | 171 | 171 | Т | 171 | | | Fibroadenoma | Skin | + | | | Squamous cell papilloma | | | | | | | • | | | X | | | | | | | | | | | | | | | | | | Trichoepithelioma | | | | | | | | | | - | | | | | | | | | | | | | | | | | | Subcutaneous tissue, fibroma | | | X | | | | | | | X | | | | | | | | | | | | X | | X | | | | Subcutaneous tissue, fibrous | histiocytoma, multiple | | | | | | | | | | | | | | | | | | X | | | | | | | | | | Subcutaneous tissue, lipoma | Musculoskeletal System | Bone | + | | | Pelvis, femur, osteosarcoma | | | X | Skeletal muscle | Nervous System | Brain | + | | | Peripheral nerve | Spinal cord | Respiratory System | Larynx | + | + | + | + | A | + | | | Lung | + | | | Alveolar/bronchiolar carcinoma | Fibrous histiocytoma, metastatic, skin | | | | | | | | | | | | | | | | | | X | | | | | | | | | | Histiocytic sarcoma, metastatic, | | | | | | | | | | | | | | | | | | Λ | | | | | | | | | | mesentery | Mesothelioma malignant, metastatic, | peritoneum | Osteosarcoma, metastatic, bone | | | X | Nose | + | + | + | | + | | | Pleura | + | | | Histiocytic sarcoma, metastatic, | mesentery | Leiomyosarcoma, metastatic, stomach, | glandular | | | | | | | | | | | | | | X | | | | | | | | | | | | | | Trachea | + | | | Special Senses System | Eye | + | | | Harderian gland | + | | | Zymbal's gland | TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 7
2
9 7
3
0 | | 7
3
0 | 7
3
0 | 7
3
0 | 7
3
0 | 7
3
1 | 7
3
1 | 7
3
1 | 7
3
1 | 7
3
1 | 7
3
1 | | 3 | | |---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----|-----|-----------------------------| | Carcass ID Number | 0
2
0 | 0
2
1 | 0
2
2 | 0
2
4 | 0
2
5 | 0
2
6 | 0
2
9 | 3 | 3 | 4 | 4 | | 0 | | 3 | | 4 | 0
4
7 | | | | 0
3
2 | 0
3
6 | 4 |) (| 1 | Total
Tissues/
Tumors | | Integumentary System | Mammary gland
Carcinoma | + | + | - + | - + | + | M | + | M | + | + | X | + | + | + | + | M | + | + | + | + | M | 1 - | ⊦ N | Λľ | M | + | 35
1 | | Fibroadenoma
Skin
Squamous cell papilloma | + | + | - + | - + | + | + | + | + | + | + | X
+ | + | + | + | + | + | + | + | + | + | + | | + + | - | + | + | 1
50
1 | | Trichoepithelioma Subcutaneous tissue, fibroma Subcutaneous tissue, fibrous | | | | | | | | | | | | | | X | X | | | | | | | | | | | | 1 5 | | histiocytoma, multiple
Subcutaneous tissue, lipoma | | | | | | | | | | | | X | | | | | | | | | | | | | | | 1
1 | | Musculoskeletal System
Bone | _ | | | | | | | _ | | | _ | _ | _ | _ | _ | _ | _ | _ | | | | | | L . | _ | _ | 50 | | Pelvis, femur, osteosarcoma
Skeletal
muscle | ' | , | ' | | | ' | , | | ' | ' | + | | , | + | , | | ' | | | , | | | ' | | ' | 1 | 1 2 | | Nervous System | 40 | | Brain
Peripheral nerve
Spinal cord | + | . + | - + | - + | + | + | + | + | + | + | + | + | + | + + + | + | + | + | + | + | M | [+ | | | - | + | + | 49
1
1 | | Respiratory System | Larynx
Lung
Alveolar/bronchiolar carcinoma | + | . + | - + | - + | + | + | + | + | + | + | + | + | +
+
X | + | + | + | + | + | + | + | + | | + + | -
- | + | +++ | 49
50
1 | | Fibrous histiocytoma, metastatic,
skin
Histiocytic sarcoma, metastatic, | 1 | | mesentery Mesothelioma malignant, metastatic, peritoneum | | | | | | | | | | X | X | | | | | | | | | | | | | | | | 1 | | Osteosarcoma, metastatic, bone Nose | 4 | . 4 | - + | - 4 | + | + | + | + | + | + | Λ
+ | + | + | + | + | + | + | + | + | + | + | | L - | L . | + | + | 1 50 | | Pleura Histiocytic sarcoma, metastatic, | + | . + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + + | ·
- | + | + | 50 | | mesentery Leiomyosarcoma, metastatic, stomach, glandular | | | | | | | | | | X | | | | | | | | | | | | | | | | | 1 | | Trachea | + | + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + + | - | + | + | 50 | | Special Senses System | | | | | | | | | .1 | .1 | | | J | .1 | | .1 | .1 | | | , | , | _ | | L | _ | _ | 50 | | Eye
Harderian gland
Zymbal's gland | + | . + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | + | +++ | + | + | + | + | | ⊦ -l | - | + | + | 50
50
1 | TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 3
5
5 | 0 | 5
3
6 | 5
4
3 | 5
6
1 | 5
8
9 | 5
8
9 | 6
1
2 | 6
1
2 | 6
2
3 | 6
3
8 | 6
6
6 | 6
7
0 | 6
7
5 | 6
8
2 | 7
0
1 | 7
0
4 | 7
2
2 | 7
2
5 | 7
2
9 | 7
2
9 | 7
2
9 | 7
2
9 | 7
2
9 | 7
2
9 | |--|-------------|---|-------------| | Carcass ID Number | 0
0
9 | 0 | 0
1
7 | 0
1
8 | 0
4
1 | 0
0
1 | 0
1
5 | 0
3
5 | 0
4
4 | 0
2
3 | 0
3
1 | 0
3
9 | 0
1
6 | 0
2
7 | 0
3
4 | 0
5
0 | 0
0
6 | 0
1
9 | 0
2
8 | 0
0
8 | 0
1
0 | 0
1
1 | 0
1
2 | 1 | 0
1
4 | | Urinary System | Kidney Histiocytic sarcoma, metastatic, mesentery Liposarcoma Pelvis, transitional epithelium, carcinoma | + | | Urinary bladder | + | | Systemic Lesions | Multiple organs Histiocytic sarcoma | + | | Leukemia mononuclear
Mesothelioma malignant | X | | | X | X | | X | X | X | | | X | | X
X | X | | X | X | X | | | | X | X | | TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 7
2
9 7
3
0 | 7
3
0 | 7
3
0 | 7
3
0 | 7
3
0 | 7
3
0 | 7
3
1 | 7
3
1 | 7
3
1 | 7
3
1 | 7
3 | 7
3
1 | 7
3
1 | 7
3
1 | | |----------------------------------|--------|-------------|-------------|-------------|-----------------------------| | Carcass ID Number | 0
2
0 | 0
2
1 | 0
2
2 | 0
2
4 | 0
2
5 | 0
2
6 | 0
2
9 | 0
3
3 | 0
3
8 | 0
4
3 | 0
4
6 | 0
4
8 | 0
0
3 | 0
0
4 | 0
3
7 | 0
4
0 | 0
4
5 | 0
4
7 | 0
0
5 | 0
0
7 | 0
3
0 | 3 | 3 | 3 | 4 | 0
4
9 | Total
Tissues/
Tumors | | Urinary System | Kidney | + | | + | + | + | + | 50 | | Histiocytic sarcoma, metastatic, | | | | | | | | | | v | | | | | | | | | | | | | | | | | 1 | | mesentery
Liposarcoma | | X | | | | | | | | X | | | | | | | | | | | | | | | | | 1 | | Pelvis, transitional epithelium, | | 21 | 1 | | carcinoma | | X | 1 | | Urinary bladder | + | - | + | + | + | + | 50 | | Systemic Lesions | Multiple organs | + | - | + | + | + | + | 50 | | Histiocytic sarcoma | | | | | | | | | | X | | | | | | | | | | | | | | | | | 1 | | Leukemia mononuclear | X | | | | | | X | X | X | | | | | | | X | | | X | | | | | | | Χ | 22 | | Mesothelioma malignant | | | | | | | | | | | Χ | | | | | | | | | | | | | | | | 2 | | | | • | _ | _ | | _ | | | | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |--|---|---|---|---|----|---|--------|-----|----------|-----|------------|--------|---|---|---|---|---|--------|---|---|---|---|-----|----| | Number of Days on Study | 0 | | | | 6 | | 6
5 | | | | | | 7 | 2 | 7 | 7 | 2 | 7 | 7 | 7 | 2 | 7 | 2 | 2 | | Number of Days on Study | - | | | | | | | | 8 0 | | | 1
7 | 2 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | _ | | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 2 | 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Carcass ID Number | 4 | 3 | 0 | 0 | 1 | | 5 | | 1 3 | | | | | | | 0 | | 1 | | 2 | 3 | 3 | 3 | | | | 4 | 4 | 5 | 2 | 0 | 0 | 0 | 9 | 5 2 | 6 | 3 | 1 | 7 | 1 | 3 | 6 | | | | 4 | 5 | 6 | 7 | 0 | | Alimentary System | Esophagus | + | + | + | + | + | + | + | + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Intestine large, colon | A | + | + | Α | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Intestine large, rectum | A | + | + | Α | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Adenoma | | | | | | | | | | | | | | | | | | X | | | | | | | | Intestine large, cecum | A | + | + | Α | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Polyp adenomatous | ntestine small, duodenum | A | + | + | Α | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | ntestine small, jejunum | A | + | + | Α | + | + | + | + - | + + | + | + | + | + | Α | + | + | + | + | + | + | + | + | + | + | | ntestine small, ileum | A | + | + | Α | + | + | + | + - | + + | + | + | + | + | Α | + | + | + | + | + | + | + | + | + | + | | iver | A | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Fibrous histiocytoma, metastatic, skin | | | | | | | | | | | X | | | | | | | | | | | | | | | Osteosarcoma, metastatic, uncertain | primary site | Mesentery | | + | | | | | | + | | | | + | | | + | | | | | + | | + | + | | | ancreas | Α | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Fibrous histiocytoma, metastatic, skin | | | | | | | | | | | X | | | | | | | | | | | | | | | Salivary glands | A | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Stomach, forestomach | A | + | + | Α | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | stomach, glandular | A | + | + | Α | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Congue | | | | | | | | | + | | | | | | | | | | | | | | | | | Cardiovascular System | Blood vessel | + | + | + | + | + | + | + | + . | + + | + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | | leart | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Endocrine System | Adrenal cortex | + | + | + | + | | + | + | + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Osteosarcoma, metastatic, bone | | | | | Χ | Adrenal medulla Pheochromocytoma malignant | + | + | + | + | + | + | + | + - | + + | + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Pheochromocytoma benign Bilateral, pheochromocytoma benign | slets, pancreatic | A | | | _ | + | _ | _ | _ | <u> </u> | | | _ | | _ | _ | _ | + | + | + | _ | + | | Ŋſ | _ | | Adenoma | А | - | - | 7 |
7" | _ | т | Γ, | + +
X | . + | | _ | т | - | + | X | ~ | 7 | 7 | - | - | - | IVI | 1" | | | | | 5 | _ | | | | | + + | | | | | | _ | | _ | _ | | ر | J | | | _ | | Parathyroid gland | | + | + | + | + | | T
_ | Τ. | | | - +
- + | | + | + | | + | | T
+ | | + | T | T | + | T- | | Pituitary gland | + | - | X | 7 | | | т
Х | v · | | + | | | X | - | ~ | ~ | ~ | X | 7 | - | v | - | Υ | | | Pars distalis, adenoma Pars intermedia, adenoma | | | Λ | | Λ | Λ | Λ | Λ. | Λ | | | Λ | Λ | | | | | Λ | | | X | X | Λ | Λ | | | | 5 | 5 | _ | + | _ | _ | _ | + + | | | | | J | _ | _ | _ | _ | | J | + | | , | _ | | Fhyroid gland | + | + | + | _ | | | т | Τ. | T + | + | + | + | + | + | _ | _ | _ | _ | _ | + | + | | | | | C-cell, adenoma | ' | ' | | | | X | | | . ' | | ' | ' | | ' | | | | , | | | ' | | X | | TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: 100 ppm | Number of Days on Study | 7 | | |--|--------|---|--------|-----|---|----|---|---|---|--------|---|---|---|--------|---|---|---|---|---|--------|---|--------|---|--------|---|------------------| | Number of Days on Study | 2
9 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | G IDN I | 2 | | 2 | Tota | | Carcass ID Number | 4
7 | 8 | 0
4 | 1 2 | 1 | 8 | 2 | 5 | 6 | 2
7 | 8 | 0 | 8 | 4
1 | 4 | 0 | 9 | 1 | 1 | 1
9 | 9 | 2 | 5 | 4
6 | | Tissues
Tumor | | Alimentary System | Esophagus | + | 50 | | Intestine large, colon | + | 48 | | Intestine large, rectum Adenoma | + | 48 | | Intestine large, cecum | + | 48 | | Polyp adenomatous | | | | | | | | | | | | X | | | | | | | | | | | | | | 46 | | Intestine small, duodenum | + | 48 | | Intestine small, jejunum Intestine small, ileum | + | 47
47 | | Liver | + | 49 | | Fibrous histiocytoma, metastatic, skin | ' | ' | | | | ' | | ' | ' | | | | ' | | | | | | ' | ' | ' | | | ' | , | - T- | | Osteosarcoma, metastatic, uncertain primary site | | | | | | | | | | | | | | | | | | X | | | | | | | | | | Mesentery | | | + | | + | | + | | | | | + | + | | | | | | | | + | | | | | 13 | | Pancreas Fibrous histiocytoma, metastatic, | + | 49 | | skin | Salivary glands | + | 49 | | Stomach, forestomach
Stomach, glandular | + | 48 | | Tongue | | | _ | Т | Т | | | Т | | | | Т | | Т | _ | | | Т | Т | Т | | _ | | | Т | 40 | | Cardiovascular System | - | | Blood vessel | + | 50 | | Heart | + | 50 | | Endocrine System | Adrenal cortex | + | 50 | | Osteosarcoma, metastatic, bone | Adrenal medulla | + | 50 | | Pheochromocytoma malignant | | | | | | | | | | | X | | | | | Χ | | | | | | | | | | 2 | | Pheochromocytoma benign | | | | Χ | | | | | | | | X | Χ | | | | | | | | | | | | | 3 | | Bilateral, pheochromocytoma benign | | | | | | | | | | | | | | | | | | | X | | | | | | | | | Islets, pancreatic | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | | + | + | + | + | + | | + | + | 48 | | Adenoma Parathyroid gland | | | | X | | M | | , | X | | | , | , | , | | | X | + | , | , | | X
+ | X | | | 49 | | Parathyroid gland
Pituitary gland | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | 48
50 | | Pars distalis, adenoma | +
V | Y | Y | X | | 7" | T | | X | | | | - | X | | | | X | | - | | X | - | X | Т | 30 | | Pars intermedia, adenoma | Λ | Λ | Λ | Λ | Λ | | | Λ | Λ | Λ | Λ | Λ | X | Λ | | Λ | Λ | Λ | Λ | | Λ | Λ | | Λ | | 31 | | Thyroid gland | + | 5(| | C-cell, adenoma | | | | X | | | | | | | - | | | | | | | | | | | | | | | 5 | | TA | BLE | A 2. | |----|-----|------| | | | | | | 1 | 3 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | |---|---|--------|---|---|---|---|--------|---|---|---|---|---|---|---|---|---|---|---|--------|---|---|--------|--------|---|----------------| | Number of Days on Study | 0 | - | | 8 | | | 5 | | | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | 6 | 3 | 9 | 2 | 5 | 4 | 4 | 9 | 2 | 4 | 8 | 0 | 7 | 2 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | | 2 | 2 | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | 2 | 2 | | 2 | 2 | 2 | 2 | | 2 | 2 | 2 | 2 | 2 | _ | | Carcass ID Number | 4 | 3
4 | | 0 | 1 | | 5
0 | | | | | | | | | | | | 1
7 | | | 3
5 | 3
6 | | 4
0 | | General Body System | Peritoneum | | + | | Genital System | Coagulating gland | | + | pididymis | + | + | + | + | + | + | + | | | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Preputial gland | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Adenoma
Carcinoma | | X | | | | | | | X | | | | | | | | | | | | | | | | | | rostate | + | | eminal vesicle | A | + | + | + | + | + | + | + | | + | | + | + | | + | + | + | + | + | + | + | + | + | + | + | | estes | + | + | + | + | + | + | | | | | + | | | + | | | | | + | | | + | + | + | | | Bilateral, interstitial cell, adenoma
Interstitial cell, adenoma | | X | X | X | | X | | X | X | X | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | | Iematopoietic System | Bone marrow | + | | Fibrous histiocytoma, metastatic, skin | | | | | | | | | | | | X | | | | | | | | | | | | | | | symph node | | | + | | + | | | | | | + | | | | | | | | | | | | | + | | | ymph node, bronchial | M | Μ | M | Μ | Μ | M | M | Μ | M | M | + | M | + | M | M | Μ | M | Μ | Μ | Μ | Μ | Μ | Μ | + | M | | ymph node, mandibular | | | | | | | M | ymph node, mesenteric | A | + | | ymph node, mediastinal | A | M | + | Μ | + | Μ | M | M | + | + | + | + | + | + | + | + | M | Μ | Μ | Μ | + | M | Μ | Μ | M | | Spleen | A | + | | Fibrous histiocytoma, metastatic, skin | | | | | | | | | | | | X | | | | | | | | | | | | | | | Thymus | + | M | + | + | M | + | + | + | M | M | | | + | + | + | + | + | + | + | + | + | + | + | + | + | | ntegumentary System | Adenoma multiple | M | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | M | + | + | + | + | + | M | + | + | | Adenoma, multiple | | _ | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | + | | | | | | _ | | Skin Subcutaneous tissue, fibroma Subcutaneous tissue, fibrous | + | + | _ | _ | т | т | + | X | - | - | 7 | Τ | - | 7 | _ | - | - | _ | _ | т | _ | _ | _ | _ | ⁺ X | | histiocytoma | | | | | | | | | | | | X | | | | | | | | | | | | | | | Subcutaneous tissue, lipoma | Ausculoskeletal System | Bone | + | | Femur, osteosarcoma | | | | | X | keletal muscle | | | | | | | | + | | | | + | | | | | | | | | | + | | | | | Fibrous histiocytoma, metastatic, | skin | | | | | | | | | | | | X | | | | | | | | | | | | | | | Osteosarcoma | Χ | | | | TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: 100 ppm | 7
2
9 | 7
2
9 | 7
3
0 3 | 3 | 7
3
1 | | | |-------------|-------------------------------
--|--|--|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | 2
4
7 | 4 | 2
0
4 | 2
1
2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 0 | 0 | 1 | 1 | 1 | 2 | 4 | 4 | 4 | 4 | Total
Tissues/
Tumors | | + | 49 | _ | + | 5(| | + | 50 | _ | | + | + | + | + | + | + | + | + | | | | | | | | | | + | | + | + | + | + | + | + | 50 | | + | + | + | + | + | + | + | + | | | | | + | | | | | + | | | + | + | + | + | + | 49 | | + | + | + | | | | | | + | + | + | | + | | | | + | | | | | | | | | 51 | | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | X | X | X | X | X | X | X | X | 3 | + | 50 | | М | + | М | М | М | м | + | м | М | М | М | м | м | м | м | | м | м | м | м | м | м | + | М | М | 4 | 2 | 4 | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | М | + | + | + | + | + | + | 4 | + | + | + | + | M | + | M | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | 4. | _ | | + | + | + | + | + | + | + | + | | | | | + | + | | | + | + | + | + | + | + | + | + | + | 5 | | | | | | | | | | X | | X | X | | | | X | | | | | | | | X | | | | | | | | | | | | | | | | X | + | 50 | + | | | | | | + | | | | + | | | (| 1 | | | 9 2 4 7 + + + + X M M M H M | 9 9 2 2 4 4 7 8 + + + + + + X M + M M H M H M H M H M H M H | 9 9 0 2 2 2 4 4 0 7 8 4 + + + + + + + + + + X X X + + + M + M M M M M M M M H + + | 9 9 0 0 2 2 2 2 4 4 0 1 7 8 4 2 + + + + + + + + + + + X X X X X + + + + M + M M M M M M M M M M M M H + + + + | 9 9 0 0 0 0 2 2 2 2 2 4 4 0 1 1 7 8 4 2 4 + + + + + + + + + + + + + + + + + + | 9 9 0 0 0 0 0 2 2 2 2 2 2 2 4 4 0 1 1 1 7 8 4 2 4 8 + + + + + + + + + + + + + + + + + + | 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 9 9 0 0 0 0 0 0 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 9 9 0 0 0 0 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | | 1 | | | | 6 | | | | 6 | | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | |---|---|---|--------|---|--------| | Number of Days on Study | 0 | | | | 0 | | | | | | | | | 2 | | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | _ | | | 6 | 3 | 9 | 2 | 5 | 4 | 4 | 9 | 2 | 4 | 8 | 0 | 7 | 2 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | | 2 | | | Carcass ID Number | 4 | - | | | 1 | | | | | | | | | | | | | | | | | | | 3 | | | | 4 | 4 | 5 | 2 | 0 | 0 | 0 | 9 | 5 | 2 | 6 | 3 | 1 | 7 | 1 | 3 | 6 | 8 | 7 | 3 | 4 | 5 | 6 | 7 | 0 | | Nervous System | Brain | + | | Oligodendroglioma malignant | | | | X | Peripheral nerve | Spinal
cord | Respiratory System | Larynx | | + | | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | | Lung | + | | Alveolar/bronchiolar adenoma
Fibrous histiocytoma, metastatic, | skin | | | | | | | | | | | | X | | | | | | | | | | | | | | | Osteosarcoma, metastatic, bone | | | | | Х | | | | | | | Λ | | | | | | | | | | | | | | | Osteosarcoma, metastatic, uncertain primary site | | | | | 71 | Nose | Α | + | + | Α | + | | Pleura | | | | | + | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Frachea | A | + | | Special Senses System | Eye | | | | | + | | | | | | | | | | | + | | | | | | | + | + | + | | Harderian gland | + | | Urinary System | Kidney | Α | + | | Pelvis, transitional epithelium, carcinoma | Urinary bladder | A | + | | Systemic Lesions | 1 | | 1 | 1 | 1 | | + | + | + | + | + | + | + | | 1 | 1 | 1 | + | | Multiple organs | + | + | | + | | + | + | + | | | | + | _ | | | ' | ' | | | | - | + | _ | _ | ' | | | + | + | +
X | + | +
X | + | + | + | | X | | + | _ | X | | ' | | | | X | _ | X | _ | _ | ' | | Individual Animal Tumor Patholo | gy of Ma | le | Ra | its | in 1 | the | 2- | Yea | ar | Inl | ıal | ati | on | St | udy | y o | f D | ivi | ny] | lbe | nz | ene | e-H | P: | 10 | 0 ppm | |--|--------------------------| | Number of Days on Study | 7
2
9 | 7
2
9 | 7
3
0 7
3
1 | | Carcass ID Number | 2
4
7 | 2
4
8 | 2
0
4 | 1 | 1 | 2
1
8 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 2
4
3 | 0 | 0 | 1 | 1 | 1 | | 4 | | 4 | 4 | Tota
Tissues
Tumor | | Nervous System | - | | Brain
Oligodendroglioma malignant
Peripheral nerve | + | 5 | | Spinal cord | | | | | | | | | | | | | + | | | | | | + | | | | + | | | | | Respiratory System | Larynx
Lung | + | 5 | | Alveolar/bronchiolar adenoma Fibrous histiocytoma, metastatic, skin Osteosarcoma, metastatic, bone | | | | | | | | | | | X | | | | | | | | | | | | | | | | | Osteosarcoma, metastatic, uncertain primary site | | | | | | | | | | | | | | | | | | Х | | | | | | | | | | Nose | + | 4 | | Pleura
Trachea | + | 5
4 | | Special Senses System | Eye
Harderian gland | + | 5 | | Urinary System
Kidney | + | 4 | | Pelvis, transitional epithelium,
carcinoma
Urinary bladder | + | X
+ | + | + | + | + | 4 | | Systemic Lesions Multiple organs Leukemia mononuclear Mesothelioma malignant | + | + | + | + | + | + | + | + | +
X | + | + | + | + | + | +
X | +
X | + | +
X | + | +
X | + | + | + | + | +
X | 5 | | | | | _ | _ | _ | _ | | | | _ | _ | | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|---|---|--------|---|---|---|---|---| | Number of Days on Study | | | | | 5 | | | | 6 | | | | | | 7 | | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | Number of Days on Study | | | | | 8 | | | | | | | | | 9 | | | | | | 2 | 2 | | 2 | 9 | 2 | | | 4 | U | 4 | 8 | 8 | 6 | / | 9 | 3 | 1 | 6 | / | 4 | 4 | / | 2 | 2 | 3 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | Carcass ID Number | 4 2 | 4 | | Saleass ID Ivalisel | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | Alimentary System | Esophagus | + | | Intestine large, colon | + | A | + | A | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | + | + | | Intestine large, rectum | + | + | + | A | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | + | + | | Polyp adenomatous | A | A | | A | | , | | | | , | , | A | , | | , | | | | , | , | , | | | | | | Intestine large, cecum | | | | | | | | | | | | | | + | | | | | | + | + | + | + | + | + | | Intestine small, duodenum Intestine small, jejunum | | | | | | | | | | | | | | + | | | | | | + | + | + | + | + | + | | Intestine small, ileum | | | | | | | | | | | | | | + | | | | | | + | | + | + | + | + | | Liver | + | + | | | | | | | | | | | | + | | | | | | | + | + | + | + | + | | Pheochromocytoma malignant,
metastatic, adrenal medulla | | | | | | | | | | | | | | | | | X | | | | | | | | | | Mesentery | | | + | | + | | | + | | + | | + | | + | | | 21 | + | | + | + | | | | + | | Oral mucosa | | | | | | | | | | | + | | | | | | | | | | | | | | | | Pancreas | + | | Salivary glands | + | | Stomach, forestomach | + | | stomach, glandular | + | | Cardiovascular System | Blood vessel | + | | Heart | + | | Endocrine System | Adrenal cortex | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | | | | + | | + | + | + | + | | Adrenal medulla | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | | Pheochromocytoma malignant | | | | | | | | | | | | | | | | X | X | | | | | X | | | | | Pheochromocytoma benign
Bilateral, pheochromocytoma benign | | | | | | | | | | | | | | | | Λ | | | | | | Λ | | | | | Islets, pancreatic | + | | Adenoma | | | | | | | | | | , | | X | , | | | | | | | | | | | | | | Carcinoma | X | | | Parathyroid gland | + | + | | | | | | | | | | | | + | | | | | | | | | | | + | | Pituitary gland | + | + | + | + | + | | | | | | | | | + | | | | | | | | | | | + | | Pars distalis, adenoma | Thyroid gland C-cell, adenoma | +
X | + | + | + | + | + | | General Body System | Peritoneum | | | | | | | | | | | | | | | + | | | | | | | | | | | | Number of Days on Study | 7 |---|---|--------|--------|--------|--------|--------|---|--------|--------|--------|--------|--------|---|--------|---|--------|---|--------|-----|--------|--------|--------|----|---|--------|--------------------| | Number of Days on Study | | 7 | , | 7 | | | Number of Days on Study | 2 | 2 | _ | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | 3 | | | | 9 | 9 | 9 | 9 | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 4 | Total | | Carcass ID Number | 3 | 3
6 | 3
7 | 4 | 4 | 4 | 0 | 0
4 | 1
9 | 2
6 | 2
8 | 3 | | 4
0 | 4 | 4
7 | 0 | | 1 2 | | 1
6 | 3
5 | | | 5
0 | Tissues/
Tumors | | Alimentary System | Esophagus | + | 50 | | Intestine large, colon |
+ | 47 | | Intestine large, rectum | + | 48 | | Polyp adenomatous | | | | | | | Χ | | | | | | | | | | | | | | | | | | | 1 | | Intestine large, cecum | + | 46 | | Intestine small, duodenum | + | 48 | | Intestine small, jejunum | + | 47 | | Intestine small, ileum | + | 45 | | Liver | + | 50 | | Pheochromocytoma malignant, metastatic, adrenal medulla | 1 | | Mesentery | | + | + | + | | | | | | | + | | + | | | | + | | | | | | | + | + | 18 | | Oral mucosa | 1 | | Pancreas | + | 50 | | Salivary glands | + | 50 | | Stomach, forestomach | + | 50 | | Stomach, glandular | + | 50 | | Cardiovascular System | Blood vessel | + | 50 | | Heart | + | 50 | | Endocrine System | Adrenal cortex | + | 50 | | Adrenal medulla | + | 50 | | Pheochromocytoma malignant | | | | | | | | | | | X | | | | | | | | | | | | | | | 2 | | Pheochromocytoma benign | | | | X | | | | X | X | | | | | | X | | X | | | | | | | | X | 8 | | Bilateral, pheochromocytoma benign | | | | | | | | | | | | | X | | | | | | | | | | | | | 1 | | Islets, pancreatic | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | 50 | | Adenoma | | | | | | | | | | | | | | | X | | | | | | | | | | | 2 | | Carcinoma | | | | | | | | | , | | | | | | | | | | | | | | | | | 1 | | Parathyroid gland | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | 49 | | Pituitary gland Pars distalis, adenoma | + | | +
X | +
v | + | | _ | | | + | | +
X | + | + | | | + | | + | | | | | | +
X | 50
31 | | Thyroid gland | | A
+ | A
+ | Λ
+ | Λ
+ | Λ
+ | + | X
+ | Λ
+ | + | Λ
+ | + | + | + | + | X
+ | + | X
+ | + | X
+ | | Λ
+ | X | + | A
+ | 50 | | C-cell, adenoma | Т | 1. | | | ' | ' | | ' | ' | ' | | ' | ' | ' | ' | ' | ' | | X | ' | ' | 1. | 1. | | | 2 | | General Body System | Peritoneum | | . 1 | .1 | | _ | _ | _ | _ | J | | | | 5 | , | + | + | 5 | | + | + | | . 1 | | | _ | 50 | | FEIROIGUII | + | + | + | + | + | _ | _ | _ | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | _ | 50 | | TABLE | A2 | |--------------|-----------| |--------------|-----------| | | | | | | _ | | | | | | | | | | | _ | _ | _ | | _ | _ | _ | _ | | _ | |---|---|----|---|----|--------|--------|--------|---|--------|---|--------|--------------|--------|---|--------|--------|----------|--------|--------|----|---|----|-----|-----|--------| | Number of Days on Study | | | | 5 | 5
7 | 5
8 | 6
1 | | 6
5 | | 6
7 | 6
8 | 6
9 | 6 | 7
1 | 7
2 | 7 | 7
2 | 7
2 | 7 | 7 | 7 | 7 | 7 | 7
2 | | rumber of Days on Study | 4 | | | | 8 | | | | | 1 | 6 | | | 4 | | | 2 | | 9 | 9 | 9 | 9 | 9 | | 9 | | | 4 | | Carcass ID Number | 2 | 2 | 4 | 0 | 3 | 2 | | | 1 | | | | | | | | | | | | | 1 | | | | | | 0 | 1 | 9 | 9 | 8 | 4 | 8 | 9 | 4 | 5 | 4 | 7 | 8 | 7 | 7 | 5 | 0 | 5 | 6 | 0 | 1 | 5 | 2 | 3 | 9 | | Genital System | Epididymis | + | | Penis | | | | | | | | | | | | | | | | + | | | | + | | | | | | | Preputial gland | + | | Prostate
Seminal vesicle | + | | Testes | + | | Bilateral, interstitial cell, adenoma | Г | | X | X | | ' | ' | | | X | 1 | | ' | , | ' | X | ' | | X | ' | X | | ' | X | | | Interstitial cell, adenoma | | X | | -1 | | X | X | | | | X | X | | X | X | | X | | | | | -1 | | . 1 | | | Hematopoietic System | Bone marrow | + | | Lymph node | | | | + | | | | | | | + | | | | + | | | + | | | | | + | | + | | Lymph node, bronchial | | | | | M | ymph node, mandibular | | | | | M | cymph node, mesenteric | + | | | | + | | | | | | | | | | | | | + | | | | + | | + | | | Lymph node, mediastinal | + | M | + | + | + | | | | + | | | | + | | | | IVI
+ | | + | + | + | | IVI | + | M
+ | | pleen
hymus | + | + | + | + | | + | + | + | + | + | | | | + | | | + | | + | + | + | + | + | + | + | | ntegumentary System | Mammary gland | _ | + | + | + | + | + | + | + | + | + | + | м | + | + | + | + | + | + | + | + | + | + | + | + | + | | Carcinoma | + | 7" | T | Τ* | Τ' | Т | т' | г | г | г | Г | 1 V 1 | Τ' | г | г | г | г | Т | Т | Τ' | Т | Τ' | Τ' | 7" | 1 | | Fibroadenoma | | | | | X | Skin | + | | Basal cell adenoma | ' | | | | X | | | | | | | | | | | | | | • | | | | , | | | | Subcutaneous tissue, fibroma | X | | | | | Subcutaneous tissue, lipoma | X | | Musculoskeletal System | Bone | + | | skeletal muscle | Nervous System | Brain | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | | Astrocytoma malignant | | | | | | | | | | | | | | | | | | | X | | | | | | | | Oligodendroglioma malignant | Peripheral nerve
Spinal cord | Respiratory System | Larynx | + | | Lung | + | | Alveolar/bronchiolar carcinoma
Squamous cell carcinoma | Nose | + | | Pleura | + | | Trachea | + | TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: 200 ppm | Number of Days on Study | 7 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | | 7 | 7 | | 7 | 7 | 7 | 7 | 7 | 7 | | |---|-----|---|---|-----|---|---|---|---|---|---|--------|--------|--------|--------|--------|---|---|----|--------|---|---|-----|--------|---|--------|----------------| | Number of Days on Study | 9 | 9 | 9 | 9 | 9 | 9 | 0 | 0 | 0 | 0 | 3
0 | 3
0 | 3
0 | 3
0 | 3
0 | 0 | 1 | 1 | 3
1 | 1 | 1 | 1 | 1 | 1 | | | | | 4 | Tot | | Carcass ID Number | 3 | 3 | 3 | 4 2 | 4 | 4 | 0 | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 0 | 0 | 1 | 1 | 1 | 3 5 | 4 | 4 | 5 | Tissue
Tumo | | Genital System | Epididymis | + | | | Penis | Preputial gland | + | | | Prostate
Seminal vesicle | + | | | Testes | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
+ | + | + | + | + | + | + | + | + | + | | | Bilateral, interstitial cell, adenoma
Interstitial cell, adenoma | X | X | X | | X | X | X | | X | X | | X | X | X | | | | | X | X | X | X | | X | | | | Hematopoietic System | Bone marrow | + | | | ymph node | + | | + | | | | | | | | | | | | | | | | | + | | | | + | | | | cymph node, bronchial | + | M | M | M | M | M | M | M | M | + | + | + | M | M | M | + | + | M | M | M | M | M | M | + | M | | | ymph node, mandibular | M | | | M | | | | | | | | | | | | | | | | | M | M | + | | M | | | ymph node, mesenteric | + | | | | | | | | + | | | | | | | | + | | + | | + | + | | | + | | | ymph node, mediastinal | | | | M | Spleen
Thymus | + | + | | | + | + | | + | + | | | | | + | | | | | | + | + | + | +
M | + | | , | | Integumentary System | Mammary gland
Carcinoma | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | +
X | | | Fibroadenoma | | | | | | X | | | | | X | | | | | | | | | X | | | | | X | | | Skin | + | | | Basal cell adenoma
Subcutaneous tissue, fibroma
Subcutaneous tissue, lipoma | | | | | | | | | | | X | | | | | | X | | | X | | | | | | | | Musculoskeletal System | Bone
Skeletal muscle | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ++ | + | + | + | + | + | + | + | | | Nervous System | Brain | + | | | Astrocytoma malignant | X | | | | | | | | Oligodendroglioma malignant | | | | | | | | | | X | | | | | | | | | | | | | | | | | | Peripheral nerve
Spinal cord | | | | | | | | | | | | | | | | | | + | | | | | | | | | | Respiratory System | Larynx | + | | | Lung | + | | | Alveolar/bronchiolar carcinoma
Squamous cell carcinoma | | | | | | | | | X | | | | | | | | | | | | | | | X | | | | Nose | + | | | Pleura | + | | | Trachea | + | | TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: 200 ppm | - | | | | | | | | |--|-----------------------------| | Number of Days on Study | 7
2
9 | 7
2
9 | 7
2
9 | 7
2
9 | 7
2
9 | 7
2
9 | 7
3
0 7
3
1 | | Carcass ID Number | 4
3
3 | 4
3
6 | 4
3
7 | 4
4
2 | 4
4
3 | 4
4
4 | 4
0
1 | 4
0
4 | 4
1
9 | 4
2
6 | 4
2
8 | 4
3
1 | 4
3
2 | 4
4
0 | 4
4
1 | 4
4
7 | 4
0
2 | 4
0
3 | 4
1
2 | 4
1
3 | 4
1
6 | 4
3
5 | 4
4
6 | 4
4
8 | 4
5
0 | Total
Tissues/
Tumors | | Special Senses System Eye Harderian gland Zymbal's gland Carcinoma | +++ | + + | + | + + | + | + | + + | + + | + + | + | + + | + + | +++ | +++ | + + + | + + | +++ | + + | +++ | +++ | + + | +
+
X | + + | + + | +++ | 48
50
3
2 | | Urinary System
Kidney
Urethra
Urinary bladder | + | | + | 50
1
50 | | Systemic Lesions Multiple organs Leukemia mononuclear Mesothelioma malignant | + | + | + | + | + | +
X | +
X | + | + | + | + | + | +
X | + | +
X | + | +
X | + | + | +
X | + | + | + | +
X | + | 50
14
1 | | TABLE A2
Individual Animal Tumor Pathol | ogy of Ma | ale | Ra | ts i | n t | he 2 | 2-Y | ear | In | hal | atio | on | Stu | ıdy | of | Di | iviı | ıyl | bei | nze | ene | -Н | P: | 200 ppm | |--|-----------|-----|----|------|-----|------|-----|-----|-----|-----|------|----|-----|-----|----|----|------|-----|-----|-----|-----|----|----|---------| | | 1 | 4 | 5 | 5 | 5 | 5 | 6 (| 6 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | Number of Days on Study | 1 | 6 | 4 | 6 | 7 | 8 | 1 | 1 5 | 6 | 7 | 8 | 9 | 9 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | 4 | 0 | 4 | 8 | 8 | 6 | 7 9 | 9 3 | 1 | 6 | 7 | 4 | 4 | 7 | 2 | 2 | 3 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | | 4 | 4 | 4 | 4 | 4 | 4 | 4 4 | 4 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Carcass ID Number | 2 | 2 | 4 | 0 | 3 | 2 | 1 : | 3 1 | 0 | 3 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | | | 0 | 1 | 9 | 9 | 8 | 4 | 8 9 | 9 4 | 5 | 4 | 7 | 8 | 7 | 7 | 5 | 0 | 5 | 6 | 0 | 1 | 5 | 2 | 3 | 9 | | Special Senses System | Eye | - | + + | + | Α | + | + | + | + - | + + | + | Α | + | + | + | + | + | + | + | + | + | + | + | + | + | | Harderian gland | - | + + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Zymbal's gland | | | | | | | | | | | | | + | | | | | | | | | | | | | Carcinoma | | | | | | | | | | | | | X | | | | | | | | | | | | | Urinary System | Kidney | - | + + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Urethra | | | | | + | Urinary bladder | + | + + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Systemic Lesions | Multiple organs | - | + + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Leukemia mononuclear | | | X | X | | | | | | | | | | X | X | | X | | | | X | | | X | | Mesothelioma malignant | | | | | | | | | | X | | | | | | | | | | | | | | | | N. I. (D. G. I | 5 | 5 | - | 5 | 5 | 6 | 6 | | 6 | | | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | |---|-----|---|---|--------|----------|---|---|--------|---|--------|--------|---|--------|---|---|---|--------|--------|---|---|---|---|---|---|---| | Number of Days on Study | 1 3 | | | 6
9 | | 1 | | 3
8 | | | 8 | 8 | 8
7 | | 8 | 0 | 2 | 2
4 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | | 6 | | Carcass ID Number | 1 4 | 0 | 0 | 4 | | 3 | 3 | 1 | 2 | 3 | | 2 | 1 | 3 | 2 | 5 | 4 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | | | | | | | <i>J</i> | | _ | | | | | 0 | | | 1 | | | | | | | | | | 0 | | Alimentary System
Sophagus | 1 | | | | | | | | | | + | + | | + | + | | _ | | | | | | | | | | esopnagus
ntestine large, colon | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | +
A | + | + | + | + | + | + | + | + | | ntestine large, rectum | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | A | + | + | + | + | + | + | + | + | | ntestine large, rectum | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | | A | | + | + | + | + | + | + | + | | ntestine small, duodenum | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | A | | + | + | + | + | + | + | + | | ntestine small, jejunum | A | Α | Α | + | + | + | + | + | + | + | + | + | + | + | + | + | Α | + | + | + | + | + | + | + | + | | ntestine small, ileum | A | Α | Α | + | + | + | + | + | + | + | + | + | + | + | + | + | Α | + | + | + | + | + | + | + | + | | Fibrosarcoma | | | | | | | | | | X | | | | | | | | | | | | | | | | | iver | + | | Carcinoma, metastatic, islets, pancreatic | Fibrous histiocytoma, metastatic, | skin | | | | | | | | | | | | | | | | | X | | | | | | | | | | Mesentery | | | | | | | + | | + | + | + | | | | | | | | | | | | | | | | Carcinoma, metastatic, kidney | | | | | | | | | | | | X | | | | | | | | | | | | | | | Oral mucosa Phoremosal squamous call papilloma | | | + | | | | | | | +
X | | | | | | | | | | | | | | | | | Pharyngeal, squamous cell papilloma rancreas | _ | _ | _ | _ | _ | _ | _ | _ | | | + | _ | _ | + | + | + | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Carcinoma, metastatic, kidney Acinus, adenoma | ' | | ' | | | ' | ' | ' | ' | ' | | X | ' | | | ' | ' | | ' | ' | | | | ' | ' | | alivary glands | + | | tomach, forestomach | + | + | + | + | + | + | + | | + | | | | | | | | + | | | + | + | + | + | + | + | | stomach, glandular | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | | Cardiovascular System | Blood vessel | + | + | + | + | + | + | + | + |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | leart | + | | Endocrine System | Adrenal cortex | + | + | + | + | + | + | + | + | + | + | | | + | + | + | + | + | + | + | + | + | + | + | + | + | | Carcinoma, metastatic, kidney | | | | | , | | | | | | | X | | | | | | | , | , | | | | | | | Adrenal medulla Pheochromocytoma malignant | + | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Pheochromocytoma mangnant Pheochromocytoma benign | | | | | | | | | X | | 1 | | | | | | | | | | Х | | | | | | slets, pancreatic | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | | Adenoma | | | | | | X | | | • | • | - | | X | - | | • | • | - | | | X | | | | | | Carcinoma | arathyroid gland | + | | ituitary gland | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | | Pars distalis, adenoma | | | | | | X | X | X | X | X | X | | X | | X | X | | X | | | | | X | | | | Pars distalis, ganglioneuroma | | | | | | | | | | | | | | | | | | | X | | | | | | | | Thyroid gland | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | | C-cell, adenoma
C-cell, carcinoma | General Body System | Peritoneum | + | | Carcinoma, metastatic, kidney | | | | | | • | | | - | • | | X | • | | | • | - | - | | | | | · | | | | | 7 | | |---|-----|---|--------|---|---|---|--------|--------|--------|--------|--------|----|--------|--------|--------|---|---|--------|-----|---|-----|---|---|---|---|-----------------| | Number of Days on Study | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | | | | | | | | | | | (| _ | (| | | | | | | | | | T-4- | | Carcass ID Number | 6 2 | 6 | 6 | 6 | 6 | 6 | 6
4 | 6
4 | 6
4 | 6
4 | 6
4 | 6 | | 6
1 | | | | 6 | | | | | 6 | 6 | | Tota
Tissues | | Carcass ID Number | 5 | 6 | 2
7 | 2 | 6 | 9 | 1 | 4 | 6 | 8 | 9 | | 0
7 | 9 | 3
1 | | | 0
4 | 1 0 | 1 | 1 5 | 2 | 2 | 2 | | Tumor | Alimentary System | - | | Esophagus | + | 50 | | Intestine large, colon | + | 49 | | Intestine large, rectum | + | 49 | | Intestine large, cecum | + | 49 | | Intestine small, duodenum | + | 49 | | Intestine small, jejunum | + | 40 | | Intestine small, ileum | + | 40 | | Fibrosarcoma | _ | | Liver Carcinoma, metastatic, islets, | + | 50 | | pancreatic
Fibrous histiocytoma, metastatic, | | | | | | | | | | | | X | | | | | | | | | | | | | | | | skin | Mesentery | | | | + | | | | | | + | | + | | | | + | | + | | | + | | | | | 1 | | Carcinoma, metastatic, kidney | Oral mucosa | | + | | | + | 4 | | Pharyngeal, squamous cell papilloma | Pancreas | + | 50 | | Carcinoma, metastatic, kidney | Acinus, adenoma | | | | | | | | | | | X | | | | | | | | | | | | | | | | | Salivary glands | + | 50 | | Stomach, forestomach | + | 50 | | Stomach, glandular | + | 49 | | Cardiovascular System | Blood vessel | _ | 50 | | Heart | + | 5(| | | | · | | | | · | | | | · | | · | | · | | | · | | · | | | | | · | | J. | | Endocrine System | 5. | | Adrenal cortex | + | 50 | | Carcinoma, metastatic, kidney | Adrenal medulla | + | 50 | | Pheochromocytoma malignant | | | | | | | | v | | | | v | | | | | | | | | | v | v | v | | , | | Pheochromocytoma benign | | | | | | | | X | | | | X | | | | | | | | | | | | X | | | | Islets, pancreatic | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | | +
X | + | + | | | + | + | + | 50 | | Adenoma | | | | | | | | | Λ | X | | 37 | X | | | | | Λ | | | X | | | | | 9 | | Carcinoma | | | | | | | | | 3.4 | 1.1 | | X | | M | | | | | + | | | | | | | 4′ | | Parathyroid gland | + | + | + | + | + | + | + | | | | | | | | | | | + | | + | + | + | + | + | + | | | Pituitary gland | + | + | + | + | + | + | + | + | + | | + | | | | | | | + | + | + | + | + | + | + | + | 49 | | Pars distalis, adenoma | | X | | X | X | X | X | | X | X | | X | X | X | X | X | | X | X | X | | X | X | X | | 25 | | Pars distalis, ganglioneuroma | | , | | | | | | | | | | | | | , | | | | | | , | | | | | 44 | | Thyroid gland | + | | + | 49 | | C-cell, adenoma | | | | | | | | | | | | | | v | | | | | | | | | X | X | | 2 | | C-cell, carcinoma | | | | | | | | | | | | | | X | | | | | | | | | | | | | | General Body System | | , | | | | | | | | | | | | | , | | | | | | , | | | | | | | Peritoneum Carcinoma, metastatic, kidney | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Laromomo motostatio kidnovi | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | |---|--------|--------|--------|--------|---|--------|---|--------|--------|---|---|--------|-----|--------|---|--------|---|--------|--------|--------|--------|--------|--------|---|---| | Number of Days on Study | 1 3 | | 6
7 | | | 1 4 | 3 | 3 | 7
4 | 8 | | 8 | 8 7 | 9 | | 1 0 | 2 | 2 4 | 2
9 | 2
9 | 2
9 | 2
9 | 2
9 | 2 | | | | 6 | | Carcass ID Number | 1
4 | 0
9 | | 4
5 | | 3
0 | | | | 3 | | | 1 | 3
7 | | 5
0 | | 1
7 | | 0
5 | | | 1
6 | | | | Genital System | Coagulating gland | | | | | | | | | | | + | | | | | | | | | | | | | | | | Epididymis | + | + | + | + | + | + | + | + | + | + | | | | + | | | + | + | + | + | + | + | + | + | + | | Preputial gland
Adenoma
Carcinoma | + | + | + | + | + | + | + | +
X | + | + | + | + | X | + | + | + | + | + | + | + | + | + | + | + | + | | Prostate | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Carcinoma, metastatic, kidney
Seminal vesicle | + | + | + | + | + | + | + | + | + | | | X | | + | + | + | + | + | + | + | + | + | + | + | + | | Carcinoma, metastatic, kidney | + | + | + | + | + | + | + | + | + | | | X | | + | | | | + | + | + | + | + | + | + | + | | Bilateral, interstitial cell, adenoma
Interstitial cell, adenoma | | X | | X | X | X | | X | | X | | | | X | | | | | | | X | X | X | | X | | Hematopoietic System | Bone marrow | + | | Lymph node Lymph node, bronchial | M | + | М | | | М | М | М | М | + | М | М | М | + | М | М | М | M | М | М | М | М | М | М | M | | Lymph node, mandibular | | | | | | | | | | | | | | M | | | | | | | | | | | | | Lymph node, mesenteric Carcinoma, metastatic, kidney | + | + | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | | Lymph node, mediastinal Carcinoma, metastatic, kidney | + | + | + | + | + | + | + | + | | | | X | | M | | | | | | | | + | + | + | + | | Spleen Carcinoma, metastatic, kidney | + | + | + |
+ | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | | Fibrous histiocytoma, metastatic, skin | | | | | | | | | | | | | | | | | X | | | | | | | | | | Γhymus | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | | Integumentary System
Mammary gland | + | | Fibroadenoma | | Ċ | | | | | Ċ | | | | Ċ | | | Ċ | | | | Ċ | | | | | X | | ' | | Fibroadenoma, multiple
Skin | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | X
+ | + | + | + | + | + | | Basal cell adenoma
Subcutaneous tissue, fibroma | | | | X | | | | | | X | | | | | | | | | | | | | | | | | Subcutaneous tissue, fibrous
histiocytoma
Subcutaneous tissue, myxoma | | | | | | | | | | | | | | | | | X | Musculoskeletal System Sone | + | | Skeletal muscle
Carcinoma, metastatic, kidney | · | , | | | , | • | | • | • | | | +
X | | | | • | ٠ | | , | | | , | | | | | Nervous System | Brain
Peripheral nerve
Spinal cord | + | TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: 400 ppm | - Individual Ammai Tumoi Tatnoi | - |---|-------------|---|-------------|------|------------------------| | Number of Days on Study | 7
2
9 7
3
0 | 7
3
0 | 7
3
0 | 7
3
0 | 7
3
0 | 7
3
0 | 7
3
1 | 7
3
1 | 7
3
1 | 7
3
1 | 7
3
1 | 7
3
1 | | | | | | Carcass ID Number | 6
2
5 | 6
2
6 | 6
2
7 | 6
3
2 | 6
3
6 | 6
3
9 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 6
1
9 | 3 | 3 | 4 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 6
3
8 | Tiss | Total
sues/
mors | | Genital System | Coagulating gland | 1 | | Epididymis | + | | 50 | | Preputial gland | + | M | + | | 49 | | Adenoma | 1 | | Carcinoma | - 1 | | Prostate Carcinoma, metastatic, kidney | + | | 50 | | Seminal vesicle | + | | 50 | | Carcinoma, metastatic, kidney | ' | | | | ' | | | | ' | | | | , | ' | | | | | | ' | | ď | , | | ' | | 1 | | Testes | + | | 50 | | Bilateral, interstitial cell, adenoma | X | | X | | | X | X | | | X | | | | X | | | | | | X | | | X | | X | | 32 | | Interstitial cell, adenoma | | X | | | X | | | | | | | | X | | | X | | | | | | X | | | | | 10 | | Hematopoietic System | Bone marrow | + | | 50 | | Lymph node | | | + | | | | | | | | | | | + | | | | | | | | | + | | | | 6 | | Lymph node, bronchial | M | Μ | Μ | Μ | M | M | Μ | Μ | M | Μ | Μ | Μ | Μ | M | + | Μ | M | Μ | Μ | Μ | Μ | Μ | + | Μ | M | | 5 | | Lymph node, mandibular | M | + | | 1 | | Lymph node, mesenteric | + | | 50 | | Carcinoma, metastatic, kidney | 1 | | Lymph node, mediastinal | + | + | + | + | + | + | M | + | M | M | M | M | + | M | M | + | M | M | + | + | + | + | + | + | M | | 38 | | Carcinoma, metastatic, kidney | 1 | | Spleen Carcinoma, metastatic, kidney Fibrous histiocytoma, metastatic, skin | + | | 50 | | Thymus | + | + | + | + | + | + | Μ | + | Μ | Μ | + | + | + | + | + | + | Μ | + | Μ | M | + | + | + | + | + | | 1
42 | | • | Integumentary System Mammary gland Fibroadenoma | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | | 48 | | Fibroadenoma, multiple | 1 | | Skin | + | | 50 | | Basal cell adenoma | X | | | | X | | | | | | | X | | | | | | | | | | | | | | | 3 | | Subcutaneous tissue, fibroma | X | | | | | 3 | | Subcutaneous tissue, fibrous | histiocytoma | 1 | | Subcutaneous tissue, myxoma | | | | | | | X | 1 | | Musculoskeletal System | Bone | + | | 50 | | Skeletal muscle
Carcinoma, metastatic, kidney | | | | | + | | | | | | | | | | | | | | | | | + | | | + | | 4 | | Nervous System | Brain | + | | 50 | | Peripheral nerve | | | | | + | | | | | | | | | | | | | | | | | + | | | | | 2 | | Spinal cord | | | | | + | | | | | | | | | | | | | | | | | + | | | | | 2 | | | _ | _ | _ | _ | _ | _ | | _ | , | _ | , | , | , | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |--|---|---|---|---|--------|---|--------|---|---|---|---|---|---|--------|---|--------|---|--------|---|---|---|---|--------|---|---| | | 5 | - | | 5 | | 6 | 6 | | | 6 | | | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | Number of Days on Study | 1 | 6 | | | | 1 | | 3 | | | | 8 | 8 | 9 | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | 3 | 2 | 7 | 9 | 9 | 4 | 3 | 8 | 4 | 0 | 0 | 2 | 7 | 4 | 8 | 0 | 3 | 4 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | | 6 | | | | | | | | | | | | | 6 | | | | | | | 6 | | | 6 | | | Carcass ID Number | 4 | - | 0 | - | | | | | | 3 | | | | 3
7 | | | | - | - | | | | 1
6 | | | | espiratory System | Larynx | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | | Lung | + | | Alveolar/bronchiolar adenoma, multiple | Carcinoma, metastatic, kidney
Fibrous histiocytoma, metastatic, | | | | | | | | | | | | X | | | | | | | | | | | | | | | skin | | | | | | | | | | | | | | | | | X | | | | | | | | | | ose | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | Α | + | + | + | + | + | + | + | + | | leura | + | | rachea | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | | pecial Senses System | Eye | + | + | + | + | + | + | + | | | | | | | + | | | | | | | | | + | | + | | arderian gland | + | | Jrinary System | Kidney | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | А | + | + | + | + | + | + | + | + | | Renal tubule, carcinoma rinary bladder | _ | + | + | + | + | + | + | + | + | + | + | X | + | + | + | + | Δ | + | + | + | + | + | + | + | + | | mary oracion | ' | ' | ' | ' | | ' | ' | | ' | ' | | ' | ' | ' | | ' | П | ' | | ' | ' | | ' | ' | ' | | ystemic Lesions | Aultiple organs Leukemia mononuclear | + | + | + | | +
X | + | +
X | + | + | + | + | + | + | +
X | | +
X | + | +
X | + | + | + | + | + | + | + | TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: 400 ppm | | | | | | | | | | | | | | | | _ | | | | - | | | | | | | * * | | |--|-------------|---|-------------|-----|---------------------------| | Number of Days on Study | 7
2
9 | _ | 7
2
9 7
3
0 | 7
3
0 |
7
3
0 | 7
3
0 | 7
3
0 | 7
3
0 | 7
3
1 | | | Carcass ID Number | 6
2
5 | 2 | 6
2
7 | 6
3
2 | 6
3
6 | 6
3
9 | 6
4
1 | 4 | 6
4
6 | 4 | 4 | 0 | 0 | 6
1
9 | 3 | 3 | 4 | 0 | 1 | 1 | 1 | 2 | 2 | | 3 | | Total
issues/
umors | | Respiratory System | Larynx
Lung
Alveolar/bronchiolar adenoma, | + | | 49
50 | | multiple
Carcinoma, metastatic, kidney
Fibrous histiocytoma, metastatic, | | | | | | | | | | | | | | | | X | | | | | | | | | | | 1 | | skin | 1 | | Nose
Pleura | + | | 49 | | Trachea | + | | 50
49 | | Special Senses System | Eye | + | | 49 | | Harderian gland | + | | 50 | | Urinary System | 40 | | Kidney | +
X | + | + | + | | 49
2 | | Renal tubule, carcinoma
Urinary bladder | + | | 49 | | Systemic Lesions | Multiple organs | + | | + | | + | | 50 | | Leukemia mononuclear
Mesothelioma malignant | X | | | | | | X | | | | | | | X
X | | | | | | | | | | X | | | 10
2 | TABLE A3 Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |---------------------------------------|------------------------------|----------------|-------------------------|----------------| | Adrenal Medulla: Benign Pheochro | omocytoma | | | | | Overall rate ^a | 12/50 (24%) | 4/50 (8%) | 9/50 (18%) | 7/50 (14%) | | Adjusted rate ^b | 27.2% | 8.8% | 20.4% | 15.5% | | Terminal rate ^c | 8/31 (26%) | 4/35 (11%) | 8/32 (25%) | 6/32 (19%) | | First incidence (days) | 623 | 729 (T) | 722 | 674 | | Poly-3 test ^d | P=0.248N | P=0.021N | P=0.308N | P=0.136N | | Adrenal Medulla: Benign or Malig | nant Pheochromocytoma | | | | | Overall rate | 13/50 (26%) | 6/50 (12%) | 11/50 (22%) | 8/50 (16%) | | Adjusted rate | 29.5% | 13.2% | 24.9% | 17.7% | | Terminal rate | 9/31 (29%) | 6/35 (17%) | 9/32 (28%) | 6/32 (19%) | | First incidence (days) | 623 | 729 (T) | 722 | 674 | | Poly-3 test | P=0.236N | P=0.050N | P=0.405N | P=0.140N | | Brain: Astrocytoma or Oligodendr | oglioma | | | | | Overall rate | 0/49 (0%) | 1/50 (2%) | 3/50 (6%) | 0/50 (0%) | | Adjusted rate | 0.0% | 2.2% | 6.8% | 0.0% | | Terminal rate | 0/30 (0%) | 0/35 (0%) | 3/32 (9%) | 0/32 (0%) | | First incidence (days) | e | 582 | 729 (T) | ` / | | Poly-3 test | P=0.614N | P=0.517 | P=0.126 | f | | Kidney (Single and Step Sections): | Renal Tubule Adenoma or Carc | inoma | | | | Overall rate | 0/50 (0%) | 0/49 (0%) | 2/50 (4%) | 3/49 (6%) | | Adjusted rate | 0.0% | 0.0% | 4.5% | 6.8% | | Terminal rate | 0/31 (0%) | 0/35 (0%) | 1/32 (3%) | 1/32 (3%) | | First incidence (days) | | | 619 | 682 | | Poly-3 test | P=0.027 | _ | P=0.244 | P=0.123 | | Mammary Gland: Fibroadenoma | | | | | | Overall rate | 1/50 (2%) ^g | 0/50 (0%) | 5/50 (10%) ^g | 2/50 (4%) | | Adjusted rate | 2.3% | 0.0% | 11.2% | 4.5% | | Terminal rate | 1/31 (3%) | 0/35 (0%) | 4/32 (13%) | 2/32 (6%) | | First incidence (days) | 729 (T) | — | 578 | 729 (T) | | Poly-3 test | P=0.240 | P=0.490N | P=0.108 | P=0.514 | | Mammary Gland: Fibroadenoma o | or Adenoma | | | | | Overall rate | 1/50 (2%) ^g | 1/50 (2%) | 5/50 (10%) ^g | 2/50 (4%) | | Adjusted rate | 2.3% | 2.2% | 11.2% | 4.5% | | Terminal rate | 1/31 (3%) | 1/35 (3%) | 4/32 (13%) | 2/32 (6%) | | First incidence (days) | 729 (T) | 729 (T) | 578 | 729 (T) | | Poly-3 test | P=0.316 | P=0.749N | P=0.108 | P=0.514 | | Pancreatic Islets: Adenoma | | | | | | Overall rate | 5/50 (10%) | 8/48 (17%) | 2/50 (4%) | 9/50 (18%) | | Adjusted rate | 11.4% | 18.0% | 4.5% | 19.6% | | Terminal rate | 3/31 (10%) | 7/34 (21%) | 1/32 (3%) | 6/32 (19%) | | First incidence (days) | 543 | 704 | 687 | 614 | | Poly-3 test | P=0.255 | P=0.285 | P=0.211N | P=0.218 | | Pancreatic Islets: Adenoma or Car | cinoma | | | | | Overall rate | 6/50 (12%) | 8/48 (17%) | 3/50 (6%) | 10/50 (20%) | | Adjusted rate | ` / | ` / | ` / | \ / | | 3 | 13.7% | 18.0% | 6.8% | 21.8% | | Terminal rate First incidence (days) | 4/31 (13%) | 7/34 (21%) | 2/32 (6%) | 7/32 (22%) | | First incidence (days) | 543
P=0 222 | 704
P=0.200 | 687
P=0.226N | 614
P=0 224 | | Poly-3 test | P=0.233 | P=0.399 | P=0.236N | P=0.234 | TABLE A3 Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | Pituitary Gland (Pars Distalis): Adenoma Diverall rate Adjusted rate First incidence (days) Poly-3 test Skin: Basal Cell Adenoma Diverall rate Adjusted rate First incidence (days) Poly-3 test Skin: Trichoepithelioma or Basal Cell Ader Diverall rate Adjusted rate First incidence (days) Poly-3 test Skin: Trichoepithelioma or Basal Cell Ader Diverall rate Adjusted rate First incidence (days) Poly-3 test Skin: Squamous Papilloma, Trichoepithelio Diverall rate Adjusted rate | 36/50 (72%) 76.6% 24/31 (77%) 506 P=0.150N 0/50 (0%) 0.0% 0/31 (0%) — P=0.020 1/50 (2%) 2.3% 1/31 (3%) | 30/50 (60%)
63.3%
22/35 (63%)
569
P=0.113N
0/50 (0%)
0.0%
0/35 (0%) | 31/50 (62%)
66.7%
20/32 (63%)
586
P=0.197N
1/50 (2%)
2.2%
0/32 (0%)
578
P=0.507 | 29/49 (59%)
63.1%
19/32 (59%)
614
P=0.109N
3/50 (6%)
6.7%
3/32 (9%)
729 (T) | |---|---|--|--|---| | Overall rate Adjusted rate First incidence (days) Poly-3 test Skin: Basal Cell Adenoma Overall rate Adjusted rate Ferminal rate First incidence (days) Poly-3 test Skin: Trichoepithelioma or Basal Cell Ader Overall rate Adjusted rate First incidence (days) Poly-3 test Skin: Trichoepithelioma or Basal Cell Ader Overall rate First incidence (days) Poly-3 test Skin: Squamous Papilloma, Trichoepithelio Overall rate | 76.6% 24/31 (77%) 506 P=0.150N 0/50 (0%) 0.0% 0/31 (0%) — P=0.020 10ma 1/50 (2%) 2.3% | 63.3%
22/35 (63%)
569
P=0.113N
0/50 (0%)
0.0%
0/35 (0%) | 66.7%
20/32 (63%)
586
P=0.197N
1/50 (2%)
2.2%
0/32 (0%)
578 | 63.1%
19/32 (59%)
614
P=0.109N
3/50 (6%)
6.7%
3/32 (9%)
729 (T) | | Adjusted rate First incidence (days) Poly-3 test Skin: Basal Cell Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Skin: Trichoepithelioma or Basal Cell Ader Overall rate Adjusted rate First incidence (days) Poly-3 test Skin: Trichoepithelioma or Basal Cell Ader Overall rate First incidence (days) Poly-3 test Skin: Squamous Papilloma, Trichoepithelio Overall rate | 76.6% 24/31 (77%) 506 P=0.150N 0/50 (0%) 0.0% 0/31 (0%) — P=0.020 10ma 1/50 (2%) 2.3% | 63.3%
22/35 (63%)
569
P=0.113N
0/50 (0%)
0.0%
0/35 (0%) | 66.7%
20/32 (63%)
586
P=0.197N
1/50 (2%)
2.2%
0/32 (0%)
578 | 63.1%
19/32 (59%)
614
P=0.109N
3/50 (6%)
6.7%
3/32 (9%)
729 (T) | | Ferminal rate First incidence (days) Poly-3 test Skin: Basal Cell Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Skin: Trichoepithelioma or Basal Cell Ader Overall rate Adjusted rate First incidence (days) Poly-3 test Skin: Trichoepithelioma or Basal Cell Ader Overall rate First incidence (days) Poly-3 test Skin: Squamous Papilloma, Trichoepithelio Overall rate | 24/31 (77%)
506
P=0.150N
0/50 (0%)
0.0%
0/31 (0%)
—
P=0.020
noma
1/50 (2%)
2.3% | 22/35 (63%)
569
P=0.113N
0/50 (0%)
0.0%
0/35 (0%) | 20/32 (63%)
586
P=0.197N
1/50 (2%)
2.2%
0/32 (0%)
578 | 19/32 (59%)
614
P=0.109N
3/50 (6%)
6.7%
3/32 (9%)
729 (T) | | First incidence (days) Poly-3 test Skin: Basal Cell Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Skin: Trichoepithelioma or Basal Cell Ader Overall rate Adjusted rate Ferminal rate First incidence (days) Poly-3 test Skin: Squamous Papilloma, Trichoepithelio Overall rate | 506
P=0.150N
0/50 (0%)
0.0%
0/31 (0%)
—
P=0.020
noma
1/50 (2%)
2.3% | 569
P=0.113N
0/50 (0%)
0.0%
0/35 (0%) | 586
P=0.197N
1/50 (2%)
2.2%
0/32 (0%)
578 | 614
P=0.109N
3/50 (6%)
6.7%
3/32 (9%)
729 (T) | | Skin: Basal Cell Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Skin: Trichoepithelioma
or Basal Cell Ader Overall rate Adjusted rate Ferminal rate First incidence (days) Poly-3 test Skin: Squamous Papilloma, Trichoepithelio Overall rate | P=0.150N 0/50 (0%) 0.0% 0/31 (0%) — P=0.020 noma 1/50 (2%) 2.3% | P=0.113N
0/50 (0%)
0.0%
0/35 (0%) | P=0.197N 1/50 (2%) 2.2% 0/32 (0%) 578 | P=0.109N 3/50 (6%) 6.7% 3/32 (9%) 729 (T) | | Overall rate Adjusted rate First incidence (days) Poly-3 test Skin: Trichoepithelioma or Basal Cell Ader Overall rate Adjusted rate Ferminal rate First incidence (days) Poly-3 test Skin: Squamous Papilloma, Trichoepithelio Overall rate | 0.0%
0/31 (0%)
—
P=0.020
noma
1/50 (2%)
2.3% | 0.0%
0/35 (0%) | 2.2%
0/32 (0%)
578 | 6.7%
3/32 (9%)
729 (T) | | Adjusted rate Ferminal rate First incidence (days) Poly-3 test Skin: Trichoepithelioma or Basal Cell Ader Overall rate Adjusted rate Ferminal rate First incidence (days) Poly-3 test Skin: Squamous Papilloma, Trichoepithelio Overall rate | 0.0%
0/31 (0%)
—
P=0.020
noma
1/50 (2%)
2.3% | 0.0%
0/35 (0%) | 2.2%
0/32 (0%)
578 | 6.7%
3/32 (9%)
729 (T) | | Ferminal rate First incidence (days) Poly-3 test Skin: Trichoepithelioma or Basal Cell Ader Overall rate Adjusted rate Ferminal rate First incidence (days) Poly-3 test Skin: Squamous Papilloma, Trichoepithelio Overall rate | 0/31 (0%)
—
P=0.020
noma
1/50 (2%)
2.3% | 0/35 (0%) | 0/32 (0%)
578 | 3/32 (9%)
729 (T) | | Ferminal rate First incidence (days) Poly-3 test Skin: Trichoepithelioma or Basal Cell Ader Overall rate Adjusted rate Ferminal rate First incidence (days) Poly-3 test Skin: Squamous Papilloma, Trichoepithelio Overall rate | P=0.020 noma 1/50 (2%) 2.3% | ` / | 0/32 (0%)
578 | 729 (T) | | Skin: Trichoepithelioma or Basal Cell Ader Overall rate Adjusted rate Ferminal rate First incidence (days) Foly-3 test Skin: Squamous Papilloma, Trichoepithelio Overall rate | 1/50 (2%)
2.3% | ` / | 578 | 729 (T) | | Skin: Trichoepithelioma or Basal Cell Ader Overall rate Adjusted rate Ferminal rate First incidence (days) Foly-3 test Skin: Squamous Papilloma, Trichoepithelio Overall rate | 1/50 (2%)
2.3% | _ | | ` / | | Skin: Trichoepithelioma or Basal Cell Ader Overall rate Adjusted rate Ferminal rate irst incidence (days) oly-3 test Skin: Squamous Papilloma, Trichoepithelio Overall rate | 1/50 (2%)
2.3% | | | P=0.126 | | overall rate djusted rate erminal rate irst incidence (days) oly-3 test kin: Squamous Papilloma, Trichoepithelio everall rate | 1/50 (2%)
2.3% | | | 1 0.120 | | adjusted rate ferminal rate first incidence (days) foly-3 test skin: Squamous Papilloma, Trichoepithelia by overall rate | 2.3% | 0/50 (0%) | 1/50 (2%) | 3/50 (6%) | | Terminal rate First incidence (days) Poly-3 test Skin: Squamous Papilloma, Trichoepithelio Deverall rate | | 0.0% | 2.2% | 6.7% | | First incidence (days) Poly-3 test Skin: Squamous Papilloma, Trichoepithelio Dverall rate | | 0/35 (0%) | 0/32 (0%) | 3/32 (9%) | | Poly-3 test Skin: Squamous Papilloma, Trichoepithelio Dverall rate | 729 (T) | | 578 | 729 (T) | | Overall rate | P=0.097 | P=0.490N | P=0.753N | P=0.320 | | | oma, or Basal Cell Adeno | oma | | | | | 2/50 (4%) | 0/50 (0%) | 1/50 (2%) | 3/50 (6%) | | annstea rate | 4.6% | 0.0% | 2.2% | 6.7% | | Perminal rate | 1/31 (3%) | 0/35 (0%) | 0/32 (0%) | 3/32 (9%) | | First incidence (days) | 623 | _ | 578 | 729 (T) | | Poly-3 test | P=0.241 | P=0.228N | P=0.492N | P=0.515 | | • | | | | | | Skin (Subcutaneous Tissue): Fibroma | | | | | | Overall rate | 5/50 (10%) | 7/50 (14%) | 4/50 (8%) | 3/50 (6%) | | Adjusted rate | 11.3% | 15.3% | 9.1% | 6.6% | | erminal rate | 3/31 (10%) | 6/35 (17%) | 4/32 (13%) | 1/32 (3%) | | First incidence (days) | 536 | 659 | 729 (T) | 569 | | Poly-3 test | P=0.183N | P=0.403 | P=0.501N | P=0.338N | | skin (Subcutaneous Tissue): Fibroma, Myx | oma, or Fibrous Histiocy | ytoma | | | | Overall rate | 6/50 (12%) | 8/50 (16%) | 4/50 (8%) | 5/50 (10%) | | Adjusted rate | 13.6% | 17.5% | 9.1% | 11.0% | | erminal rate | 3/31 (10%) | 6/35 (17%) | 4/32 (13%) | 2/32 (6%) | | irst incidence (days) | 536 | 659 | 729 (T) | 569 | | oly-3 test | P=0.297N | P=0.413 | P=0.370N | P=0.476N | | Cestes: Adenoma | | | | | | Overall rate | 38/50 (76%) | 45/50 (90%) | 43/50 (86%) | 42/50 (84%) | | Adjusted rate | 82.3% | 93.2% | 89.3% | 86.3% | | erminal rate | 30/31 (97%) | 33/35 (94%) | 30/32 (94%) | 28/32 (88%) | | irst incidence (days) | 543 | 393 | 460 | 562 | | oly-3 test | P=0.509 | P=0.075 | P=0.232 | P=0.390 | | Thyroid Gland (C-cell): Adenoma | | | | | | Overall rate | 2/50 (4%) | 5/50 (10%) | 2/50 (4%) | 2/49 (4%) | | Adjusted rate | 4.6% | 11.0% | 4.5% | 4.6% | | Ferminal rate | 2/31 (7%) | 4/35 (11%) | 2/32 (6%) | 2/32 (6%) | | First incidence (days) | | 654 | * * | | | Poly-3 test | 729 (T) | | 729 (T) | 729 (T) | TABLE A3 Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |-------------------------------|------------------------|--------------|--------------|--------------| | Thyroid Gland (C-cell): Adeno | ma or Carcinoma | | | | | Overall rate | 3/50 (6%) | 5/50 (10%) | 2/50 (4%) | 3/49 (6%) | | Adjusted rate | 7.0% | 11.0% | 4.5% | 6.8% | | Terminal rate | 3/31 (10%) | 4/35 (11%) | 2/32 (6%) | 3/32 (9%) | | First incidence (days) | 729 (T) | 654 | 729 (T) | 729 (T) | | Poly-3 test | P=0.438N | P=0.388 | P=0.490N | P=0.654N | | All Organs: Mononuclear Cell | Leukemia | | | | | Overall rate | 22/50 (44%) | 13/50 (26%) | 14/50 (28%) | 10/50 (20%) | | Adjusted rate | 46.4% | 27.8% | 30.9% | 21.5% | | Terminal rate | 9/31 (29%) | 6/35 (17%) | 9/32 (28%) | 4/32 (13%) | | First incidence (days) | 355 | 569 | 544 | 569 | | Poly-3 test | P=0.013N | P=0.047N | P=0.092N | P=0.008N | | All Organs: Benign Neoplasms | | | | | | Overall rate | 49/50 (98%) | 49/50 (98%) | 48/50 (96%) | 48/50 (96%) | | Adjusted rate | 99.8% | 100.0% | 98.0% | 97.6% | | Terminal rate | 31/31 (100%) | 35/35 (100%) | 32/32 (100%) | 32/32 (100%) | | First incidence (days) | 506 | 393 | 460 | 562 | | Poly-3 test | P=0.198N | P=1.000 | P=0.554N | P=0.477N | | All Organs: Malignant Neoplas | ms | | | | | Overall rate | 29/50 (58%) | 20/50 (40%) | 24/50 (48%) | 18/50 (36%) | | Adjusted rate | 60.4% | 41.6% | 52.6% | 37.5% | | Terminal rate | 15/31 (48%) | 10/35 (29%) | 16/32 (50%) | 6/32 (19%) | | First incidence (days) | 355 | 393 | 544 | 562 | | Poly-3 test | P=0.037N | P=0.048N | P=0.288N | P=0.018N | | All Organs: Benign or Maligna | nt Neoplasms | | | | | Overall rate | 50/50 (100%) | 49/50 (98%) | 49/50 (98%) | 49/50 (98%) | | Adjusted rate | 100.0% | 100.0% | 100.0% | 99.3% | | Terminal rate | 31/31 (100%) | 35/35 (100%) | 32/32 (100%) | 32/32 (100%) | | First incidence (days) | 355 | 393 | 460 | 562 | | Poly-3 test | P=0.660N | P=1.000N | P=1.000N | P=0.968N | ⁽T)Terminal sacrifice Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, brain, kidney, pancreatic islets, pituitary gland, testes, and thyroid gland; for other tissues, denominator is number of animals necropsied. Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality Observed incidence at terminal kill Beneath the chamber control incidence is the P value associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the chamber controls and that exposed group. The Poly-3 test accounts for the differential mortality in animals that do not reach terminal sacrifice. A negative trend or a lower incidence in an exposed group is indicated by N. Not applicable; no neoplasms in animal group Value of statistic cannot be computed. ⁹ One carcinoma occurred in an animal that also had a fibroadenoma. $\begin{tabular}{ll} TABLE~A4a \\ Historical~Incidence~of~Renal~Tubule~Neoplasms~in~Control~Male~F344/N~Rats^a \\ \end{tabular}$ | | | Incidence in Control | S | |--|-------------------|-----------------------------|-------------------------| | Study | Adenoma | Carcinoma | Adenoma
or Carcinoma | | Historical Incidence: Inhalation Studies | | | | | Decalin | 1/50 | 0/50 | 1/50 | | Divinylbenzene | 0/50 | 0/50 | 0/50 | | Indium phosphide | 0/50 | 0/50 | 0/50 | | Methyl isobutyl ketone | 0/50 | 0/50 | 0/50 | | Naphthalene | 0/49 | 0/49 | 0/49 | | Propylene glycol mono-t-butyl ether | 1/50 | 0/50 | 1/50 | | Stoddard solvent IIC | 0/50 | 1/50 | 1/50 | | Vanadium pentoxide | 1/50 | 0/50 | 1/50 | | Overall Historical Incidence: Inhalation Studies | | | | | Total (%) | 3/399 (0.8%) | 1/399 (0.3%) | 4/399 (1.0%) | | Mean ± standard deviation | $0.8\% \pm 1.0\%$ | $0.3\% \pm 0.7\%$ | $1.0\% \pm 1.1\%$ | | Range | 0%-2% | 0%-2% | 0%-2% | | Overall Historical Incidence: All Routes | | | | | Total (%) | 6/1,448 (0.4%) | 1/1,448 (0.1%) | 7/1,448 (0.5%) | | Mean ± standard deviation | $0.5\% \pm 0.9\%$ | $0.1\% \pm 0.4\%$ | $0.5\% \pm 0.9\%$ | | Range | 0%-2% | 0%-2% | 0%-2% | ^a Data as of January 28, 2005 TABLE A4b Historical Incidence of Brain Neoplasms in Control Male F344/N Rats^a | | | Incidence in Controls | | |--|--------------------------|--------------------------------|---| | Study | Malignant
Astrocytoma | Malignant
Oligodendroglioma | Astrocytoma, Glioma,
or Oligodendroglioma ^b | | Historical Incidence: Inhalation Studies | | | | | Decalin | 0/50 | 0/50 | 0/50 | | Divinylbenzene | 0/49 | 0/49 | 0/49 | | Indium phosphide | 0/50 | 0/50 | 0/50 | | Methyl isobutyl ketone | 0/50 | 0/50 | 0/50 | | Naphthalene | 0/49 | 0/49 | 0/49 | | Propylene glycol mono- <i>t</i> -butyl ether | 0/50 | 0/50 | 0/50 | | Stoddard solvent IIC | 1/50 | 0/50 | 1/50 | | Vanadium pentoxide | 0/50 | 0/50 | 0/50 | | Overall
Historical Incidence: Inhalation Studies | | | | | Total (%) | 1/398 (0.3%) | 0/398 (0.0%) | 1/398 (0.3%) | | Mean ± standard deviation | $0.3\% \pm 0.7\%$ | | $0.3\% \pm 0.7\%$ | | Range | 0%-2% | | 0%-2% | | Overall Historical Incidence: All Routes | | | | | Total (%) | 4/1,458 (0.3%) | 1/1,458 (0.1%) | 8/1,458 (0.6%) | | Mean \pm standard deviation | $0.3\% \pm 0.7\%$ | $0.0\% \pm 0.2\%$ | $0.5\% \pm 1.1\%$ | | Range | 0%-2% | 0%-1% | 0%-4% | Data as of January 28, 2005 Includes malignant astrocytoma, malignant glioma, and benign and malignant oligodendroglioma TABLE A5 Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP^a | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |---|------------------------|------------|------------|-----------| | Disposition Summary | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Early deaths | 30 | 30 | 30 | 50 | | Moribund | 15 | 9 | 12 | 13 | | Natural deaths | 4 | 6 | 6 | 5 | | Survivors | • | - | • | - | | Died last week of the study | | | 1 | | | Terminal sacrifice | 31 | 35 | 31 | 32 | | 101111111111111111111111111111111111111 | 51 | | | <i>52</i> | | Animals examined microscopically | 50 | 50 | 50 | 50 | | Alimentary System | | | | | | Esophagus | (50) | (50) | (50) | (50) | | Foreign body | ` ' | ` ' | ` ′ | 1 (2%) | | Intestine small, jejunum | (46) | (47) | (47) | (46) | | Necrosis | ` ' | 1 (2%) | ` ′ | . / | | Intestine small, ileum | (46) | (47) | (45) | (46) | | Dilatation | ` ' | 1 (2%) | ` ′ | . / | | Liver | (50) | (49) | (50) | (50) | | Angiectasis | \(\frac{\cdot -1}{2}\) | (- / | 1 (2%) | 1 (2%) | | Clear cell focus | 2 (4%) | 5 (10%) | 1 (2%) | 1 (2%) | | Hemorrhage | 1 (2%) | (,-) | - (-/*/ | - (=/*/) | | Hepatodiaphragmatic nodule | 2 (4%) | 2 (4%) | 4 (8%) | 8 (16%) | | Inflammation, granulomatous | | 1 (2%) | () | - () | | Necrosis | 1 (2%) | 1 (2%) | 3 (6%) | 2 (4%) | | Vacuolization cytoplasmic | 1 (2%) | 2 (4%) | 3 (6%) | 3 (6%) | | Bile duct, hyperplasia | - (=/3) | = (1,14) | 3 (6%) | - (474) | | Hepatocyte, regeneration | | | 1 (2%) | | | Periportal, inflammation, chronic | | | 2 (4%) | | | Serosa, fibrosis | | 1 (2%) | 2 (173) | 1 (2%) | | Serosa, hemorrhage | | 1 (270) | | 1 (2%) | | Mesentery | (12) | (13) | (18) | (11) | | Necrosis | 7 (58%) | 13 (100%) | 18 (100%) | 9 (82%) | | Fat, hemorrhage | 7 (3070) | 13 (10070) | 10 (10070) | 1 (9%) | | Oral mucosa | (1) | | (1) | (4) | | Gingival, cyst | (1) | | (1) | 1 (25%) | | Gingival, cyst
Gingival, hyperplasia, squamous | 1 (100%) | | | 1 (23/0) | | Pancreas | (50) | (49) | (50) | (50) | | Thrombosis | (30) | (12) | 1 (2%) | (50) | | Acinus, atrophy | 15 (30%) | 18 (37%) | 27 (54%) | 21 (42%) | | Acinus, hyperplasia | 15 (50/0) | 10 (31/0) | 1 (2%) | 21 (72/0) | | Acinus, inflammation | | 1 (2%) | 1 (2/0) | | | Duct, cyst | 1 (2%) | 2 (4%) | 3 (6%) | | | Stomach, forestomach | (50) | (48) | (50) | (50) | | Diverticulum | (30) | 1 (2%) | (30) | (50) | | Hyperplasia, squamous | 1 (2%) | 1 (2/0) | | | | Inflammation, suppurative | 1 (2/0) | 1 (2%) | | | | Ulcer | 4 (8%) | 1 (2%) | 1 (2%) | | | Stomach, glandular | (50) | (48) | (50) | (49) | | Erosion | (30) | 2 (4%) | 2 (4%) | 2 (4%) | | Ulcer | 1 (2%) | 2 (4%) | 1 (2%) | 2 (4/0) | | Epithelium, hyperplasia | 1 (2/0) | Z (470) | 1 (270) | 1 (2%) | | Fongue | (1) | (1) | | 1 (2/0) | | Epithelium, hyperplasia | (1) | 1 (100%) | | | | Epidiciidii, ilypeipiasia | | 1 (10070) | | | ^a Number of animals examined microscopically at the site and the number of animals with lesion TABLE A5 Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |---|------------------------|-----------------------------|----------------|-------------------| | Cardiovascular System | | | | | | Blood vessel | (50) | (50) | (50) | (50) | | Thrombosis | 1 (2%) | () | () | () | | Heart | (50) | (50) | (50) | (50) | | Cardiomyopathy | 7 (14%) | 5 (10%) | 1 (2%) | 1 (2%) | | Atrium, thrombosis | 2 (4%) | 1 (2%) | 2 (4%) | 1 (2%) | | Pericardium, inflammation | 2 (170) | 1 (270) | 1 (2%) | 1 (270) | | Pericardium, pigmentation | | | 1 (2%) | | | Pericardium, epicardium, infiltration | | | 1 (270) | | | cellular, histiocyte | | 1 (2%) | | | | Endocrine System | | | | | | Adrenal cortex | (50) | (50) | (50) | (50) | | Hyperplasia | 1 (2%) | (30) | (50) | 2 (4%) | | Necrosis | 1 (270) | 2 (4%) | | 2 (470) | | Vacuolization cytoplasmic | 8 (16%) | 8 (16%) | 7 (14%) | 6 (12%) | | Adrenal medulla | (50) | (50) | (50) | (50) | | Hyperplasia | 12 (24%) | 13 (26%) | 8 (16%) | 14 (28%) | | Bilateral, hyperplasia | 12 (27/0) | 13 (20/0) | 0 (10/0) | 1 (2%) | | slets, pancreatic | (50) | (48) | (50) | (50) | | Hyperplasia | 1 (2%) | 1 (2%) | 2 (4%) | 2 (4%) | | Parathyroid gland | (46) | (48) | (49) | (47) | | Hyperplasia | 1 (2%) | 1 (2%) | (47) | (47) | | Pituitary gland | (50) | (50) | (50) | (49) | | Cyst | 1 (2%) | 1 (2%) | 1 (2%) | 1 (2%) | | Hemorrhage | 1 (2%) | 1 (2/0) | 1 (270) | 1 (2%) | | Pars distalis, hematocyst | 1 (270) | 1 (2%) | | 1 (270) | | Pars distalis, hyperplasia | 5 (10%) | 8 (16%) | 9 (18%) | 8 (16%) | | Γhyroid gland | (50) | (50) | (50) | (49) | | C-cell, hyperplasia | 2 (4%) | 4 (8%) | 9 (18%) | 7 (14%) | | Follicular cell, hyperplasia | 2 (178) | 2 (4%) | 2 (4%) | 1 (2%) | | General Body System None | | | | | | Genital System | | | (2) | | | Inflammation | | | 1 (50%) | | | Preputial gland | (48) | (50) | (50) | (49) | | Cyst | 1 (2%) | 1 (2%) | 2 (4%) | 1 (2%) | | Hyperplasia | 1 (2%) | 4 (8%) | 1 (2%) | 1 (2%) | | Prostate | (50) | (50) | (50) | (50) | | Hyperplasia | (· · / | (- · / | 1 (2%) | () | | Inflammation, suppurative | 5 (10%) | 1 (2%) | 4 (8%) | 2 (4%) | | Seminal vesicle | (50) | (49) | (50) | (50) | | Dilatation | Ç / | (- / | () | 1 (2%) | | | | 1 (2%) | | (/ | | Hyperpiasia | 1 (2%) | (-,*) | | | | Hyperplasia Inflammation, suppurative | | | (50) | (50) | | Inflammation, suppurative | | (50) | (50) | (50) | | Inflammation, suppurative
Testes | (50) | (50) | (50)
2 (4%) | (50) | | Inflammation, suppurative Testes Artery, inflammation, chronic active | (50) | , , | 2 (4%) | , , | | Inflammation, suppurative
estes | | (50)
12 (24%)
6 (12%) | | 9 (18%)
3 (6%) | TABLE A5 Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |---|------------------------|----------|----------|----------| | Hematopoietic System | | | | | | Lymph node | (11) | (5) | (11) | (6) | | Deep cervical, angiectasis | 1 (9%) | (0) | (11) | 1 (17%) | | Deep cervical, cyst | 1 (3,0) | 1 (20%) | | 1 (1770) | | Deep cervical, hemorrhage | | 1 (2070) | 1 (9%) | | | Deep cervical, hyperplasia, lymphoid | 1 (9%) | | - (2,73) | | | Pancreatic, ectasia | - (>, v) | | 1 (9%) | | | Pancreatic, hemorrhage | | | (4.7.4) | 1 (17%) | | Pancreatic, infiltration cellular, histiocyte | | | 1 (9%) | () , | | Lymph node, bronchial | (7) | (6) | (12) | (5) | | Hemorrhage | (1) | (-) | , | 1 (20%) | | Infiltration cellular | | | | 1 (20%) | | Pigmentation | | | | 1 (20%) | | Lymph node, mesenteric | (49) | (49) | (50) | (50) | | Angiectasis | 1 (2%) | (12) | (5.5) | (= -) | | Ectasia | (-, -) | 1 (2%) | | | | Hemorrhage | | - (=/v) | | 1 (2%) | | Hyperplasia, lymphoid | | | 1 (2%) | - (=, v) | | Infiltration cellular, histiocyte | 1 (2%) | | 1 (2%) | 3 (6%) | | Lymph node, mediastinal | (19) | (23) | (25) | (38) | | Angiectasis | | (-) | | 1 (3%) | | Hyperplasia, lymphoid | | | | 1 (3%) | | Spleen | (50) | (49) | (50) | (50) | | Accessory spleen | | 3 (6%) | (/ | 1 (2%) | | Fibrosis | 2 (4%) | 6 (12%) | 4 (8%) | 1 (2%) | | Hematopoietic cell proliferation | . , | , | · / | 1 (2%) | | Hemorrhage | | 2 (4%) | 1 (2%) | 1 (2%) | | Hyperplasia, focal, lymphoid | | 1 (2%) | · / | , | | Necrosis | 3 (6%) | 1 (2%) | 1 (2%) | 1 (2%) | | Lymphocyte, hyperplasia, diffuse | 1 (2%) | , | · / | , | | Thymus | (48) | (44) | (46) | (42) | | Hemorrhage | . , | . / | 1 (2%) | . , | | Integumentary System | | | | | | Mammary gland | (35) | (43) | (47) | (48) | | Galactocele | 3 (9%) | 2 (5%) | 6 (13%) | 3 (6%) | | Skin | (50) | (50) | (50) | (50) | | Cyst epithelial inclusion | 4 (8%) | 1 (2%) | 3 (6%) | 2 (4%) | | Hyperkeratosis | 2 (4%) | 1 (2%) | 2 (4%) | 2 (470) | | Inflammation, acute | 2 (170) | 1 (270) | 2 (4%) | | | Inflammation, granulomatous | | | 2 (170) | 1 (2%) | | Ulcer | | | 2 (4%) | 1 (270) | | Subcutaneous tissue, thrombosis | | | 1 (2%) | | | Musaulaskalatal Sustan | | | | | | Musculoskeletal System | (50) | (50) | (50) | (50) | | Bone | (50) | (50) | (50) | (50) | | Hyperostosis | 1 (20/) | | 1 (2%) | | | Cartilage, femur, hyperplasia | 1 (2%) | 1 (20/) | | | | Femur, fracture | | 1 (2%) | | | TABLE A5 Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | Nervous System Brain Compression Gliosis Hemorrhage Respiratory System Larynx Foreign body Inflammation, suppurative Epiglottis, metaplasia, squamous Lung Congestion Hemorrhage Inflammation, chronic Inflammation, chronic, diffuse Inflammation, chronic, focal Inflammation, suppurative Necrosis Thrombosis Alveolar epithelium, hyperplasia Alveolar epithelium, hypertrophy Alveolus, hypertrophy | (49)
10 (20%)
(49)
1 (2%) | (50)
5 (10%)
1 (2%) | (50)
8 (16%)
1 (2%) | (50)
6 (12%)
1 (2%) |
---|------------------------------------|---------------------------|---------------------------|---------------------------| | Brain Compression Gliosis Hemorrhage Respiratory System Larynx Foreign body Inflammation, suppurative Epiglottis, metaplasia, squamous Lung Congestion Hemorrhage Inflammation, chronic Inflammation, chronic, diffuse Inflammation, chronic, focal Inflammation, suppurative Necrosis Thrombosis Alveolar epithelium, hyperplasia Alveolar epithelium, hypertrophy Alveolus, hypertrophy | (49) | 5 (10%) 1 (2%) (49) | 8 (16%) | 6 (12%) | | Compression Gliosis Hemorrhage Respiratory System Larynx Foreign body Inflammation, suppurative Epiglottis, metaplasia, squamous Lung Congestion Hemorrhage Inflammation, chronic Inflammation, chronic, diffuse Inflammation, chronic, focal Inflammation, suppurative Necrosis Thrombosis Alveolar epithelium, hyperplasia Alveolar epithelium, hypertrophy Alveolus, hypertrophy | (49) | 5 (10%) 1 (2%) (49) | 8 (16%) | 6 (12%) | | Gliosis Hemorrhage Respiratory System Larynx Foreign body Inflammation, suppurative Epiglottis, metaplasia, squamous Lung Congestion Hemorrhage Inflammation, chronic Inflammation, chronic, diffuse Inflammation, chronic, focal Inflammation, suppurative Necrosis Thrombosis Alveolar epithelium, hyperplasia Alveolar epithelium, hypertrophy Alveolus, hypertrophy | (49) | 1 (2%) | | ` / | | Respiratory System Larynx Foreign body Inflammation, suppurative Epiglottis, metaplasia, squamous Lung Congestion Hemorrhage Inflammation, chronic Inflammation, chronic, diffuse Inflammation, chronic, focal Inflammation, suppurative Necrosis Thrombosis Alveolar epithelium, hyperplasia Alveolar epithelium, hypertrophy Alveolus, hypertrophy | | (49) | 1 (2%) | | | Larynx Foreign body Inflammation, suppurative Epiglottis, metaplasia, squamous Lung Congestion Hemorrhage Inflammation, chronic Inflammation, chronic, diffuse Inflammation, chronic, focal Inflammation, suppurative Necrosis Thrombosis Alveolar epithelium, hyperplasia Alveolar epithelium, hypertrophy Alveolus, hypertrophy | | ` / | | | | Larynx Foreign body Inflammation, suppurative Epiglottis, metaplasia, squamous Lung Congestion Hemorrhage Inflammation, chronic Inflammation, chronic, diffuse Inflammation, chronic, focal Inflammation, suppurative Necrosis Thrombosis Alveolar epithelium, hyperplasia Alveolar epithelium, hypertrophy Alveolus, hypertrophy | | ` / | | | | Foreign body Inflammation, suppurative Epiglottis, metaplasia, squamous Lung Congestion Hemorrhage Inflammation, chronic Inflammation, chronic, diffuse Inflammation, chronic, focal Inflammation, suppurative Necrosis Thrombosis Alveolar epithelium, hyperplasia Alveolar epithelium, hypertrophy Alveolus, hypertrophy | | ` / | (50) | (49) | | Inflammation, suppurative Epiglottis, metaplasia, squamous Lung Congestion Hemorrhage Inflammation, chronic Inflammation, chronic, diffuse Inflammation, chronic, focal Inflammation, suppurative Necrosis Thrombosis Alveolar epithelium, hyperplasia Alveolar epithelium, hypertrophy Alveolus, hypertrophy | · / | 2 (4%) | 3 (6%) | 2 (4%) | | Epiglottis, metaplasia, squamous Lung Congestion Hemorrhage Inflammation, chronic Inflammation, chronic, diffuse Inflammation, chronic, focal Inflammation, suppurative Necrosis Thrombosis Alveolar epithelium, hyperplasia Alveolar epithelium, hypertrophy Alveolus, hypertrophy | | 1 (2%) | 1 (2%) | 1 (2%) | | Congestion Hemorrhage Inflammation, chronic Inflammation, chronic, diffuse Inflammation, chronic, focal Inflammation, suppurative Necrosis Thrombosis Alveolar epithelium, hyperplasia Alveolar epithelium, hypertrophy Alveolus, hypertrophy | | (, | 1 (2%) | 1 (2%) | | Congestion Hemorrhage Inflammation, chronic Inflammation, chronic, diffuse Inflammation, chronic, focal Inflammation, suppurative Necrosis Thrombosis Alveolar epithelium, hyperplasia Alveolar epithelium, hypertrophy Alveolus, hypertrophy | (50) | (50) | (50) | (50) | | Hemorrhage Inflammation, chronic Inflammation, chronic, diffuse Inflammation, chronic, focal Inflammation, suppurative Necrosis Thrombosis Alveolar epithelium, hyperplasia Alveolar epithelium, hypertrophy Alveolus, hypertrophy | . , | . , | ` ' | 1 (2%) | | Inflammation, chronic, diffuse Inflammation, chronic, focal Inflammation, suppurative Necrosis Thrombosis Alveolar epithelium, hyperplasia Alveolar epithelium, hypertrophy Alveolus, hypertrophy | 2 (4%) | 1 (2%) | 4 (8%) | 4 (8%) | | Inflammation, chronic, focal Inflammation, suppurative Necrosis Thrombosis Alveolar epithelium, hyperplasia Alveolar epithelium, hypertrophy Alveolus, hypertrophy | , , | , , | 1 (2%) | , , | | Inflammation, suppurative Necrosis Thrombosis Alveolar epithelium, hyperplasia Alveolar epithelium, hypertrophy Alveolus, hypertrophy | | | 1 (2%) | | | Necrosis Thrombosis Alveolar epithelium, hyperplasia Alveolar epithelium, hypertrophy Alveolus, hypertrophy | 4 (8%) | 4 (8%) | 5 (10%) | 14 (28%) | | Thrombosis Alveolar epithelium, hyperplasia Alveolar epithelium, hypertrophy Alveolus, hypertrophy | 1 (2%) | | | | | Alveolar epithelium, hyperplasia
Alveolar epithelium, hypertrophy
Alveolus, hypertrophy | 1 (2%) | | 1 (2%) | | | Alveolar epithelium, hypertrophy
Alveolus, hypertrophy | 1 (2%) | | | | | Alveolus, hypertrophy | 4 (8%) | 8 (16%) | 6 (12%) | 6 (12%) | | | | 1 (2%) | 1 (2%) | 2 (4%) | | | | | | 1 (2%) | | Alveolus, infiltration cellular, focal, histiocyte | (/ | 12 (24%) | 11 (22%) | 4 (8%) | | Interstitium, fibrosis | 1 (2%) | 1 (2%) | 1 (2%) | 1 (2%) | | Mediastinum, abscess | 1 (2%) | | | | | Mediastinum, inflammation, chronic | | | 1 (2%) | | | Mediastinum, pigmentation | | | 1 (2%) | | | Perivascular, edema | | | | 1 (2%) | | Perivascular, infiltration cellular, eosinophil | | | | 1 (2%) | | Nose | (50) | (48) | (50) | (49) | | Foreign body | 5 (10%) | 1 (2%) | 3 (6%) | | | Inflammation, suppurative | 5 (10%) | 9 (19%) | 17 (34%) | 10 (20%) | | Glands, dilatation | 3 (6%) | 30 (63%) | 48 (96%) | 46 (94%) | | Goblet cell, hyperplasia | 1 (2%) | 3 (6%) | 7 (14%) | 16 (33%) | | Nasolacrimal duct, inflammation, suppurative | 2 (4%) | 6 (13%) | 1 (2%) | 4 (8%) | | Nasopharyngeal duct, cyst | | | | 1 (2%) | | Nasopharyngeal duct, foreign body
Nasopharyngeal duct, inflammation, suppurati | irra | | 1 (20/) | 1 (2%) | | 1 2 5 7 7 11 | .ve | | 1 (2%) | | | Nasopharyngeal duct, respiratory epithelium, | | | | 1 (20/) | | hyperplasia
Olfactory epithelium, degeneration | | 47 (98%) | 40 (000/) | 1 (2%) | | Olfactory epithelium, degeneration, hyaline | 4 (8%) | 47 (98%) | 49 (98%)
2 (4%) | 49 (100%) | | Olfactory epithelium, hyperplasia, basal cell | 4 (070) | 21 (44%) | 2 (4%)
44 (88%) | 1 (2%)
48 (98%) | | Olfactory epithelium, metaplasia | | 1 (2%) | 77 (0070) | 2 (4%) | | Respiratory epithelium, hyperplasia | 1 (2%) | 1 (270) | | 4 (470) | | Turbinate, cyst | 1 (270) | 1 (2%) | | | | Pleura | (50) | (50) | (50) | (50) | | Mesothelium, hyperplasia | (50) | (30) | 1 (2%) | (50) | | Frachea | | (40) | | | | Glands, degeneration, cystic | (50) | (49) | (50) | (49) | TABLE A5 Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |---|------------------------|----------|----------|----------| | Special Senses System | | | | | | Eye | (50) | (48) | (48) | (49) | | Anterior chamber, hemorrhage | | | 1 (2%) | | | Cornea, mineralization | | | , , | 1 (2%) | | Lens, cataract | 2 (4%) | 1 (2%) | 3 (6%) | 1 (2%) | | Retina, atrophy | | 1 (2%) | , , | | | Harderian gland | (50) | (50) | (50) | (50) | | Atrophy | , , | • • | 1 (2%) | | | Zymbal's gland | (1) | | (3) | | | Inflammation, suppurative | | | 1 (33%) | | | Urinary System | | | | | | Kidney | (50) | (49) | (50) | (49) | | Cyst | , | 1 (2%) | ` / | 1 (2%) | | Nephropathy, chronic | 37 (74%) | 41 (84%) | 41 (82%) | 45 (92%) | | Cortex, infarct | 1 (2%) | 1 (2%) | ` ' | , , | | Cortex, renal tubule, degeneration | ` / | , , | | 1 (2%) | | Cortex, renal tubule, hyperplasia | 1 (2%) | 2 (4%) | | 2 (4%) | | Cortex, renal tubule, hypertrophy | 1 (2%) | ` / | | ` / | | Medulla, infarct | ` ′ | 1 (2%) | | | | Medulla, infiltration cellular, lipocyte | | 1 (2%) | | | | Papilla, renal tubule, dilatation | | , , | | 1 (2%) | | Pelvis, transitional epithelium, hyperplasia | 1 (2%) | 1 (2%) | | ` / | | Pelvis, transitional epithelium, mineralization | | , , | | 1 (2%) | | Urethra | | | (1) | ` / | | Transitional epithelium, hyperplasia | | | 1 (100%) | | | Urinary bladder | (50) | (49) | (50) | (49) | | Calculus microscopic observation only | 4 (8%) | 2 (4%) | 4 (8%) | 4 (8%) | | Hemorrhage | 2 (4%) | 1 (2%) | 1 (2%) | ` / | | Transitional epithelium, hyperplasia | ` ′ | ` ' | 1 (2%) | | ## APPENDIX B SUMMARY OF LESIONS IN FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF DIVINYLBENZENE-HP | TABLE B1 | Summary of the Incidence of Neoplasms in Female Rats | | |----------|---|--------------| | | in the 2-Year Inhalation Study of Divinylbenzene-HP | B-2 | | TABLE B2 | Individual Animal Tumor Pathology of Female Rats | | | | in the 2-Year Inhalation Study of Divinylbenzene-HP | B-6 | | TABLE B3 | Statistical Analysis of Primary Neoplasms in Female Rats | | | | in the 2-Year Inhalation Study of Divinylbenzene-HP | B-30 | | TABLE B4 | Historical Incidence of Mononuclear Cell Leukemia in Control Female F344/N Rats | B-33 | | TABLE B5 | Summary of the Incidence of Nonneoplastic Lesions in Female
Rats | | | | in the 2-Year Inhalation Study of Divinylbenzene-HP | B-3 4 | TABLE B1 Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP^a | | Chamber | Control | 100 pj | om | 200 pj | pm | 400 j | opm | |---|-----------|---------|--------|--------|----------|--------|-------|--------| | Disposition Summary | | | | | | | | | | Animals initially in study | 50 | | 50 | | 50 | | 50 | | | Early deaths | | | | | 50 | | 20 | | | Accidental death | | | 1 | | | | | | | Moribund | 10 | | 16 | | 14 | | 26 | | | Natural deaths | 7 | | 3 | | 3 | | 2 | | | Survivors | | | | | | | | | | Terminal sacrifice | 33 | | 30 | | 33 | | 22 | | | Animals examined microscopically | 50 | | 50 | | 50 | | 50 | | | Alimentary System | | | | | | | | | | Esophagus | (50) | | (50) | | (50) | | (50) | | | Carcinoma, metastatic, Zymbal's gland | | 2%) | (30) | | (30) | | (50) | | | Liver | (50) | _, 0, | (50) | | (50) | | (50) | | | Hepatocellular carcinoma | (50) | | (30) | | | (2%) | (50) | | | Hepatocellular adenoma | | | 2 | (4%) | • | () | | | | Hepatocellular adenoma, multiple | | | _ | V | 2 | (4%) | | | | Histiocytic sarcoma, metastatic, spleen | 1 (| 2%) | | | _ | (-) | | | | Mesentery | (15) | . */ | (20) | | (17) | | (6) | | | Carcinoma, metastatic, liver | (-) | | (') | | | (6%) | (-) | | | Pancreas | (50) | | (49) | | (50) | () | (50) | | | Tongue | (1) | | (1) | | (3) | | (3) | | | Squamous cell papilloma | . , | | | (100%) | | | | (33%) | | Cardiovascular System
None | | | | | | | | | | Endocrine System | | | | | | | | | | Adrenal cortex | (50) | | (50) | | (50) | | (50) | | | Carcinoma | | | | | | | 1 | (2%) | | Carcinoma, metastatic, mammary gland | | | 1 | (2%) | | | | | | Carcinoma, metastatic, Zymbal's gland | | 2%) | . = | | <i>,</i> | | | | | Adrenal medulla | (50) | | (50) | | (50) | (20/) | (50) | (20/) | | Pheochromocytoma malignant | - | 407 | _ | (40/) | | (2%) | | (2%) | | Pheochromocytoma benign | 2 (| 4%) | 2 | (4%) | 3 | (6%) | | (2%) | | Bilateral, pheochromocytoma benign | , <u></u> | | . = | | <i>,</i> | | | (2%) | | Islets, pancreatic | (50) | 20/ | (50) | | (50) | (20/) | (50) | (20/) | | Adenoma | 1 (| 2%) | | | 1 | (2%) | | (2%) | | Carcinoma | /=A: | | /=0: | | /=~ | | | (2%) | | Pituitary gland | (50) | 7.40/\ | (50) | (600/) | (50) | (700/) | (50) | (5(0/) | | Pars distalis, adenoma | , | 74%) | | (68%) | | (78%) | | (56%) | | Thyroid gland | (50) | 20/) | (50) | | (50) | | (50) | | | Carcinoma, metastatic, Zymbal's gland | 1 (| 2%) | _ | (100/) | 4 | (20/) | 4 | (00/) | | C-cell, adenoma | 1 / | 20/) | | (10%) | | (2%) | 4 | (8%) | | C-cell, carcinoma | 1 (| 2%) | 1 | (2%) | 1 | (2%) | | | ## **General Body System** None TABLE B1 Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber | Control | 100 p | pm | 200 ppm | 400 ppm | | |--|---------|---------|-------|--------|----------|---------|--| | Genital System | | | | | | | | | Clitoral gland | (50) | | (50) | | (50) | (50) | | | Carcinoma | . / | | ` ′ | | 1 (2%) | , , | | | Ovary | (50) | | (50) | | (50) | (50) | | | Granulosa cell tumor benign | | | 1 | (2%) | | | | | Uterus | (50) | | (50) | | (50) | (50) | | | Adenoma | 1 | (2%) | | | | | | | Carcinoma | | | | | | 1 (2%) | | | Polyp stromal | 9 | (18%) | | (12%) | 8 (16%) | 6 (12%) | | | Sarcoma stromal | | | | (2%) | | | | | Schwannoma malignant | | | I | (2%) | | 1 (20/) | | | Bilateral, polyp stromal | | | 1 | (20/) | | 1 (2%) | | | Cervix, sarcoma stromal | | | | (2%) | | (2) | | | Vagina | | | (2) | (500/) | | (3) | | | Sarcoma | | | 1 | (50%) | | | | | Hematopoietic System | | | | | | | | | Lymph node | (6) | | (10) | | (9) | (8) | | | Deep cervical, carcinoma, metastatic, | ` ' | | ` / | | * * | • • | | | Zymbal's gland | 1 | (17%) | | | | | | | Pancreatic, carcinoma, metastatic, | | | | | | | | | mammary gland | | | 1 | (10%) | | | | | Pancreatic, histiocytic sarcoma, metastatic, | | | | | | | | | spleen | 1 | (17%) | | | | | | | Lymph node, bronchial | (8) | | (9) | | (5) | (14) | | | Lymph node, mandibular | (3) | | (1) | | (5) | (3) | | | Lymph node, mesenteric | (50) | | (50) | | (50) | (50) | | | Lymph node, mediastinal | (32) | | (37) | | (44) | (34) | | | Carcinoma, metastatic, mammary gland | | | 1 | (3%) | | | | | Carcinoma, metastatic, Zymbal's gland | 1 | (3%) | (50) | | (50) | (50) | | | Spleen | (50) | (20/) | (50) | | (50) | (50) | | | Histiocytic sarcoma | 1 | (2%) | | | 4.6 | | | | Thymus | (45) | | (41) | | (46) | (39) | | | Thymoma malignant | | | | | 1 (2%) | | | | Integumentary System | | | | | | | | | Mammary gland | (50) | | (50) | | (50) | (50) | | | Adenoma | (-3) | | () | (2%) | (- · / | (/ | | | Carcinoma | 3 | (6%) | | (8%) | 3 (6%) | | | | Carcinoma, multiple | | . / | | (2%) | 1 (2%) | | | | Fibroadenoma | 14 | (28%) | | (28%) | 13 (26%) | 9 (18%) | | | Fibroadenoma, multiple | 6 | (12%) | | (16%) | 6 (12%) | 5 (10%) | | | Skin | (50) | • | (50) | • | (50) | (50) | | | Basal cell carcinoma | | | 1 | (2%) | | | | | Subcutaneous tissue, histiocytic sarcoma | 1 | (2%) | | | | | | | Subcutaneous tissue, lipoma | | | | | 1 (2%) | | | | Musculoskeletal System | | | | | | | | | | (50) | | (50) | | (50) | (50) | | | Bone Famur ostaosaraoma | (50) | | (50) | | (50) | (50) | | | Femur, osteosarcoma | | | 1 | (29%) | | 1 (2%) | | | Vertebra, osteosarcoma | | | 1 | (2%) | | | | TABLE B1 Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |---------------------------------------|------------------------|----------|----------|-----------| | Nervous System | | | | | | Brain | (50) | (50) | (50) | (50) | | Astrocytoma malignant | | | 1 (2%) | | | Respiratory System | | | | | | Larynx | (50) | (50) | (49) | (50) | | Carcinoma, metastatic, thyroid gland | 1 (2%) | | | | | Carcinoma, metastatic, Zymbal's gland | 1 (2%) | | | | | Lung | (50) | (50) | (50) | (50) | | Alveolar/bronchiolar adenoma | | | | 2 (4%) | | Carcinoma, metastatic, liver | | | 1 (2%) | | | Carcinoma, metastatic, mammary gland | | 1 (2%) | | | | Carcinoma, metastatic, thyroid gland | | | 1 (2%) | | | Carcinoma, metastatic, Zymbal's gland | 1 (2%) | | | | | Osteosarcoma, metastatic, bone | | 1 (2%) | | 1 (2%) | | Nose | (50) | (50) | (49) | (49) | | Respiratory epithelium, adenoma | | | | 1 (2%) | | Pleura | (50) | (50) | (50) | (49) | | Osteosarcoma, metastatic, bone | | | | 1 (2%) | | Trachea | (50) | (50) | (50) | (50) | | Carcinoma, metastatic, Zymbal's gland | 1 (2%) | | | | | Special Senses System | | | | | | Eye | (50) | (48) | (49) | (49) | | Carcinoma, metastatic, Zymbal's gland | 1 (2%) | (-) | | | | Harderian gland | (50) | (50) | (50) | (50) | | Adenoma | () | (* *) | () | 1 (2%) | | Carcinoma, metastatic, Zymbal's gland | 1 (2%) | | | | | Zymbal's gland | (1) | | | (2) | | Carcinoma | 1 (100%) | | | 2 (100%) | | Urinary System | | | | | | Kidney | (50) | (50) | (49) | (50) | | Osteosarcoma, metastatic, bone | (50) | (50) | (37) | 1 (2%) | | Urinary bladder | (50) | (50) | (49) | (49) | | Transitional epithelium, carcinoma | (30) | (30) | 1 (2%) | (77) | | Tamononai opinionain, onioniona | | | . (270) | | | Systemic Lesions | (70) | (70) | (50) | (50) | | Multiple organs ^b | (50) | (50) | (50) | (50) | | Histiocytic sarcoma | 2 (4%) | 10 (250) | 22 (112) | 20 (110/) | | Leukemia mononuclear | 10 (20%) | 18 (36%) | 22 (44%) | 22 (44%) | TABLE B1 Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | | |---|-----------------|---------|---------|---------|--| | Neoplasm Summary | | | | | | | Total animals with primary neoplasms ^c | 46 | 46 | 49 | 47 | | | Total primary neoplasms | 87 | 104 | 107 | 90 | | | Total animals with benign neoplasms | 43 | 42 | 45 | 36 | | | Total benign neoplasms | 70 | 74 | 74 | 61 | | | Total animals with malignant neoplasms | 17 | 27 | 28 | 27 | | | Total malignant neoplasms | 17 | 30 | 33 | 29 | | | Total animals with metastatic neoplasms | 3 | 2 | 2 | 1 | | | Total metastatic neoplasms | 13 | 5 | 3 | 3 | | a b Number of animals examined microscopically at the site and the number of animals with neoplasm Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms TABLE B2 Individual Animal Tumor Pathology of Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 4
3
6 | 4
3
7 | | 4
5
5 | | 5
0
1 | 1 | 3 | 5
4
9 | | | | | 7
0
3 | | | 7
2
2 | | | 7
3
1 | | 7
3
1 | | 7
3
1 | | | |--|-------------|-------------|-------------|-------------|-------------|-------------|---|---|-------------|---|---|---|---|-------------|---|---|-------------|---|---|-------------|---|-------------|---|-------------|---|--| | Carcass ID Number | 1
3
7 | 1
1
9 | 1
3
4 | 1
0
9 | 1
0
3 | 1
3
2 | | 1 | 2 | | 3 | 2 | 4 | 1
1
6 | 2 | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 1
4
6 | 0 | | | Alimentary System | Esophagus | + | | | Carcinoma, metastatic, Zymbal's gland | | | | | | | | | | | | X | | | | | | | | | | | | | | | | Intestine large, colon | + | | | Intestine large, rectum | + | | | Intestine large, cecum | A | + | + |
+ | + | + | + | + | + | + | + | + | + | + | A | + | A | + | + | + | + | + | + | + | + | | | Intestine small, duodenum | + | + | + | + | + | + | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | | | Intestine small, jejunum | A | + | + | + | + | + | + | + | + | + | + | + | + | A | Α | + | Α | + | + | + | + | + | + | + | + | | | Intestine small, ileum | A | | + | + | + | + | + | + | + | + | + | + | | Α | | | | | | + | | + | + | + | | | | Liver | + | | | Histiocytic sarcoma, metastatic, | spleen | | | | | | | | X | Mesentery | | + | | | | + | + | | | + | + | | | | | | | + | + | | | | | | | | | Oral mucosa | | | + | Pancreas | + | | | Salivary glands | + | | | Stomach, forestomach | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | | | + | + | + | + | + | + | | | | Stomach, glandular
Tongue | + | | | Cardiovascular System | Blood vessel | + | | | Heart | + | | | Endocrine System | Adrenal cortex | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Carcinoma, metastatic, Zymbal's gland | | | | | | | | | | | | X | | | | | | | | | | | | | | | | Adrenal medulla | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | | + | + | + | | | Pheochromocytoma benign | | | | | | | | | | | | | | | | | | | X | | | X | | | | | | Islets, pancreatic Adenoma | + | | | | | _ | _ | _ | _ | + | + | + | + | + | + | + | + | + | + | + | _ | Μ | + | + | _ | _ | _ | _ | + | | | Parathyroid gland
Pituitary gland | T | + | + | + | + | + | + | + | + | + | | | | + | | | | | | | | + | T | + | + | | | Pars distalis, adenoma | - | Т | Т | | | X | | | | X | | | | X | | | | | | | | | | X | | | | Thyroid gland | + | + | + | | | + | Carcinoma, metastatic, Zymbal's gland
C-cell, carcinoma | · | · | | | | | | | · | | | X | | | · | X | | | | , | | • | · | · | , | | | General Body System | Peritoneum | + | | | Genital System | Clitoral gland | + | | | Ovary | + | | | Uterus | + | | | Adenoma
Polyp stromal | | | | | | | | | | | | X | | X | | | | | | | | | X | | | | TABLE B2 Individual Animal Tumor Pathology of Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 7 3 | 7 | | |--|--------|---|---|---|----|---|---|---|---|---|---|----|---|--------|--------|--------|--------|---|---|--------|--------|----|----|---|--------|--------------------| | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | 1 | | 1 | - | 1 | Total | | Carcass ID Number | 0
7 | 8 | 0 | 1 | 1 | 1 | 1 | 0 | 2 | 8 | 9 | | | 3
6 | 4
0 | 4
5 | 4
7 | | 0 | 0
4 | 0
5 | | 3 | | 4
9 | Tissues/
Tumors | | Alimentary System | Esophagus
Carcinoma, metastatic, Zymbal's gland | + | 50
1 | | Intestine large, colon | + | 50 | | Intestine large, rectum | + | 50 | | Intestine large, cecum | + | 47 | | Intestine small, duodenum | + | 49 | | Intestine small, jejunum | + | 46 | | Intestine small, ileum | + | 45 | | Liver Histiocytic sarcoma, metastatic, | + | 50 | | spleen
Mesentery | | | + | | | + | + | | + | | | + | | | + | + | | | | | | | | | + | 1
15 | | Oral mucosa | 1 | | Pancreas Saliyamy alanda | + | 50
50 | | Salivary glands
Stomach, forestomach | + | 50 | | Stomach, glandular | + | 50 | | Tongue | · | | | | | · | | · | | + | | · | · | | | · | | · | · | · | · | · | · | | | 1 | | Cardiovascular System | Blood vessel | + | 50 | | Heart | + | 50 | | Endocrine System | 5.0 | | Adrenal cortex | + | 50 | | Carcinoma, metastatic, Zymbal's gland
Adrenal medulla | + | 50 | | Pheochromocytoma benign | · | | Ċ | | | | | | Ċ | | | | Ċ | Ċ | Ċ | | | | | Ċ | Ċ | | Ċ | | | 2 | | Islets, pancreatic | + | 50 | | Adenoma | X | | 1 | | Parathyroid gland | + | 49 | | Pituitary gland | + | | + | 50 | | Pars distalis, adenoma | | | X | | | X | | | | X | | | | X | | X | | | | | | X | | | X | 37 | | Thyroid gland | + | 50 | | Carcinoma, metastatic, Zymbal's gland
C-cell, carcinoma | 1
1 | | General Body System | Peritoneum | + | 50 | | Genital System | | | | | | | , | , | | | , | , | , | | | | , | , | , | | | | | | , | 50 | | Clitoral gland | + | 50 | | Ovary
Uterus | + | + | + | + | + | + | + | + | + | + | + | + | | | | + | + | + | + | + | + | + | + | + | + | 50
50 | | Adenoma | | | | | 1. | ' | 1 | 1 | ' | ' | 1 | X | ' | | ' | | ' | 1 | ' | ' | | 1. | 1. | - | - 1 | 1 | | Polyp stromal | | | X | | | | X | | | X | | 21 | X | | | | | X | | | | | | X | | 9 | | · 71 | , | TABLE B2 Individual Animal Tumor Pathology of Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 4
3
6 | 4
3
7 | 4
3
7 | 4
5
5 | 4
7
7 | 5
0
1 | 5
1
5 | 5
3
3 | 5
4
9 | 6
2
5 | 6
3
1 | 6
8
7 | 6
9
4 | 7
0
3 | 7
1
0 | 7
1
6 | 7
2
2 | 7
3
1 7
3
2 | |---|-------------| | Carcass ID Number | 1
3
7 | 1
1
9 | 1
3
4 | 1
0
9 | 1
0
3 | 1
3
2 | 1
2
4 | 1 | 1
2
3 | 3 | 3 | 2 | 4 | 1
1
6 | 2 | 0 | 1
1
5 | 2 | 1
2
7 | 1
3
1 | 1
3
8 | 1
4
1 | 1
4
2 | 1
4
6 | 0 | | Hematopoietic System | Bone marrow | + | | Lymph node | | | | | | | | + | | | + |
+ | | | + | | | | | | | | | | | | Deep cervical, carcinoma, metastatic, | Zymbal's gland | | | | | | | | | | | | X | | | | | | | | | | | | | | | Pancreatic, histiocytic sarcoma, | | | | | | | | 37 | | | | | | | | | | | | | | | | | | | metastatic, spleen | 3.4 | J. | 1. A | 1.1 | 1.1 | 1 .4 | 1, 1 | X | 1.4 | 5 | _ | 1.4 | 1.1 | J | ъ. | M | 1.1 | _ | 1,1 | 1.1 | 1/1 | 1.1 | 1.1 | . 1 | М | | ymph node, bronchial
ymph node, mandibular | | | | | M
M | ymph node, mesenteric ymph node, mediastinal | | | | | + | Carcinoma, metastatic, Zymbal's gland | ' | 111 | ' | 111 | ' | ' | | ' | 111 | ' | ' | X | ' | | ' | ' | 111 | IVI | IVI | ' | | 111 | | 171 | 171 | | Spleen | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | | Histiocytic sarcoma | | | · | | · | | | X | · | | · | · | · | | · | | | | | | | · | | · | | | Thymus | M | + | + | + | + | + | + | | M | + | + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | ntegumentary System | fammary gland | + | | Carcinoma | X | X | | | Fibroadenoma | | | | | | | | | | | X | | Χ | | | Χ | Χ | | Χ | | | X | | X | | | Fibroadenoma, multiple | | | | | | | | | | | | | | X | | | | | | | | | | | | | Skin | + | | Subcutaneous tissue, histiocytic | v | sarcoma | X | Ausculoskeletal System | Bone | + | | Skeletal muscle | Nervous System | Brain | + | | Peripheral nerve | pinal cord | Respiratory System | arynx | | _ | _ | _ | + | + | + | + | _ | _ | + | + | _ | + | + | + | + | + | + | _ | _ | _ | _ | _ | + | | Carcinoma, metastatic, thyroid gland | | 1. | 1. | ' | ' | ' | | | ' | | ' | ' | ' | | ' | X | ' | | | ' | ' | 1. | 1- | 15 | ' | | Carcinoma, metastatic, triyroid gland Carcinoma, metastatic, Zymbal's gland | | | | | | | | | | | | X | | | | 21 | | | | | | | | | | | ung | + | | Carcinoma, metastatic, Zymbal's gland | ' | | | | | | | | | | | X | | | | | | | | | | | , | | - | | ose | + | | leura | + | | rachea | + | | Carcinoma, metastatic, Zymbal's gland | | | | | | | | | | | | X | | | | | | | | | | | | | | TABLE B2 Individual Animal Tumor Pathology of Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 7
3
2 | 7
3
2 | 7
3
2 | | 7
3
2 7
3
3 | |---|-----------------------------| | Carcass ID Number | 0 | | 1 | 1
1
1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 0 | 0 | 0 | 1
1
2 | 4 | | 1
4
9 | Total
Tissues/
Tumors | | Hematopoietic System | Bone marrow
Lymph node | + | 50
6 | | Deep cervical, carcinoma, metastatic,
Zymbal's gland
Pancreatic, histiocytic sarcoma, | | | | | | | | | _ | | | | | | | | | | | | | | | | | 1 | | metastatic, spleen
Lymph node, bronchial | М | + | М | Μ | М | М | М | М | M | М | M | М | М | М | М | М | М | M | М | + | M | M | М | М | M | 1 8 | | Lymph node, mandibular | | | | M | 3 | | Lymph node, mesenteric | + | | | + | 50 | | Lymph node, mediastinal | + | + | + | + | M | M | + | + | + | + | + | + | + | + | M | + | + | M | M | + | M | M | M | + | M | 32 | | Carcinoma, metastatic, Zymbal's gland
Spleen | _ | 1
50 | | Histiocytic sarcoma | | - | T | | | | | | _ | | _ | | | | | | | | _ | T | _ | | - | | Τ. | 1 | | Thymus | + | M | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 45 | | Integumentary System | Mammary gland
Carcinoma | +
X | + | 50 | | Fibroadenoma Fibroadenoma, multiple | | Х | | X | X | | Х | | X | | Х | | | X | X | | | X | X | | | Х | | | | 14
6 | | Skin | + | 50 | | Subcutaneous tissue, histiocytic sarcoma | 1 | | Musculoskeletal System | Bone
Skeletal muscle | + | 50
2 | | Nervous System | Brain | + | 50 | | Peripheral nerve
Spinal cord | | | | | | | | | + | | | | | | | | | | | | | | | | | 1
1 | | Respiratory System | Larynx Carcinoma, metastatic, thyroid gland | + | 50 | | Carcinoma, metastatic, Zymbal's gland
Lung
Carcinoma, metastatic, Zymbal's gland | + | 1
50
1 | | Nose | + | 50 | | Pleura | + | 50 | | Trachea | + | 50 | | Carcinoma, metastatic, Zymbal's gland | 1 | TABLE B2 Individual Animal Tumor Pathology of Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 4
3
6 | 4
3
7 | 4
3
7 | 4
5
5 | 4
7
7 | 5
0
1 | 5
1
5 | 5
3
3 | 5
4
9 | 6
2
5 | 6
3
1 | 6
8
7 | 6
9
4 | 7
0
3 | 7
1
0 | 7
1
6 | 7
2
2 | 7
3
1 7
3
2 | |---------------------------------------| | Carcass ID Number | 1
3
7 | 1
1
9 | 1
3
4 | 1
0
9 | 1
0
3 | 1
3
2 | 1
2
4 | 1
1
7 | 1
2
3 | 1
3
5 | 1
3
9 | 1
2
2 | 1
4
4 | 1
1
6 | 1
2
6 | 1
0
1 | 1
1
5 | 1
2
5 | 1
2
7 | 1
3
1 | 1
3
8 | 1
4
1 | 1
4
2 | 1
4
6 | 1
0
6 | | Special Senses System | Eye | + | | Carcinoma, metastatic, Zymbal's gland | | | | | | | | | | | | X | | | | | | | | | | | | | | | Harderian gland | + | | Carcinoma, metastatic, Zymbal's gland | | | | | | | | | | | | Χ | | | | | | | | | | | | | | | Zymbal's gland | | | | | | | | | | | | + | | | | | | | | | | | | | | | Carcinoma | | | | | | | | | | | | X | | | | | | | | | | | | | | | Urinary System | Kidney | + | | Urinary bladder | + | | Systemic Lesions | Multiple organs | + | | Histiocytic sarcoma | X | | | | | | | X | | | | | | | | | | | | | |
| | | | | Leukemia mononuclear | | | | | X | | | | | | X | | | Χ | X | | | | | | | | | | | TABLE B2 Individual Animal Tumor Pathology of Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 7
3
2 7
3
3 | |--|-----------------------------| | Carcass ID Number | 1
0
7 | 1
0
8 | 1
1
0 | 1
1
1 | 1
1
3 | 1
1
4 | 1
1
8 | 1
2
0 | 1
2
1 | 1
2
8 | 1
2
9 | 1
3
0 | 1
3
3 | 1
3
6 | 1
4
0 | 1
4
5 | 1
4
7 | 1
5
0 | 1
0
2 | 1
0
4 | 1
0
5 | 1
1
2 | 1
4
3 | 1
4
8 | 1
4
9 | Total
Tissues/
Tumors | | Special Senses System | Eye | + | 50 | | Carcinoma, metastatic, Zymbal's gland | 1 | | Harderian gland
Carcinoma, metastatic, Zymbal's gland | + | 50 | | Zymbal's gland | 1 | | Carcinoma | 1 | | Urinary System | Kidney | + | 50 | | Urinary bladder | + | 50 | | Systemic Lesions | Multiple organs | + | 50 | | Histiocytic sarcoma | 2 | | Leukemia mononuclear | | | | | | | X | | X | X | | | | X | | X | | | | | | | | | X | 10 | | TABLE | B2 | |--------------|-----------| |--------------|-----------| | | 3 | 4 | 5 | 5 | 5 | 5 | 6 | 6 | 6 (| 6 | 6 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | |--|--------|--------|--------|-----|--------|--------|---|-----|----------|-----|-------------|----|--------|---|---|--------|--------|--------|--------|--------|-----|--------|-----|----| | Number of Days on Study | 7
4 | 8
7 | | 4 2 | 4 | | | | 4 (| | 7 7
0 0 | | | | 0 | 0
8 | 1
1 | 1
5 | 2
9 | 3 | 3 | 3 | 3 2 | | | | 3 | 3 | 3 | 3 | 3 | | | | | | 3 3 | | 3 | | 3 | 3 | | 3 | 3 | 3 | 3 | 3 | - | 3 | | Carcass ID Number | 4 0 | 1
5 | 4
5 | 1 | 3
4 | 0 | | | 0 . | | 1 3
8 7 | | 0
9 | | 3 | 4
9 | | 1 | 4 | 0
5 | 1 2 | | 0 | | | Alimentary System | sophagus | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | | ntestine large, colon | + | + | + | + | + | + | + | + | + - | | A + | | + | + | + | + | + | + | + | + | + | + | + | + | | ntestine large, rectum | + | + | + | + | + | + | + | + | + - | | A + | | + | + | + | + | + | + | + | + | + | + | + | + | | ntestine large, cecum | + | + | + | + | + | A | + | + | | | A + | | + | + | + | + | + | + | + | + | + | + | + | + | | ntestine small, duodenum | + | + | + | + | + | + | + | + | | | A + | | + | + | + | + | + | + | + | + | + | + | + | + | | ntestine small, jejunum
ntestine small, ileum | + | + | + | + | + | +
A | | | | | A +
A + | | + | + | + | + | + | + | + | + | + | + | + | + | | iver | | + | + | + | + | | | | | | A. +
+ + | | + | + | + | + | + | + | + | + | T | + | + | + | | Hepatocellular adenoma | - | Т | г | - | Γ. | | Υ | ' | ' ' | | . Т | 7" | Т | Г | | | 1 | r | | Г | Г | Γ | Т | 1 | | Mesentery | | | | | + | | | + | + - | + | | | | | | | + | | | | | | + | | | ancreas | + | + | + | + | + | | M | | | | + + | + | + | + | + | + | | + | + | + | + | + | + | + | | alivary glands | + | + | + | + | + | + | | | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | | tomach, forestomach | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | | tomach, glandular | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | | ongue
Squamous cell papilloma | | | | | | | | | | | | | | | | | | +
X | Cardiovascular System | lood vessel
leart | + | + | + | + | + | + | + | + + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Endocrine System | drenal cortex | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Carcinoma, metastatic, mammary gland | X | drenal medulla
Pheochromocytoma benign | + | + | + | + | + | + | + | + | + - | + - | + + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | | slets, pancreatic | + | + | + | + | + | + | + | + | + - | + - | + + | | | + | + | + | + | + | + | + | + | + | + | + | | arathyroid gland | + | + | + | + | | M | | | + - | | + + | | | + | + | + | + | + | + | + | + | + | + | + | | ituitary gland | + | + | + | + | + | + | | | | | | + | | | | | + | + | | + | + | +
v | + | | | Pars distalis, adenoma
Thyroid gland | X
+ | _ | + | + | + | + | | | X Z | | X.
+ + | _ | | | X | | | + | | | X | | | | | C-cell, adenoma | + | Т | X | - | 7" | 7" | т | | т -
Х | | - + | | т | - | 7 | | 7" | T | | Т | - | - | - | T' | | C-cell, carcinoma | | | 21 | | | | | | | | | X | | | | | | | | | | | | | | General Body System | eritoneum | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Genital System | litoral gland | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | | vary | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Granulosa cell tumor benign | Iterus | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Polyp stromal | | | | | | | | | | | X | X | X | | | | | | | | | | X | | | Sarcoma stromal | | | | | | X | Schwannoma malignant | | | | | X | Cervix, sarcoma stromal | Vagina
Sarcoma | | | | | | | | | | | | + | | | | | | | | | | | | | TABLE B2 Individual Animal Tumor Pathology of Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: 100 ppm | | - | | | | | | | | | | | | | | | | | | | - | | | | | | | |--------------------------------------|---|---|---|--------|--------|---|---|---|----|---|---|---|--------|---|--------|---|---|---|---|--------|--------|---|--------|--------|--------|----------| | | 7 | | | Number of Days on Study | 3 | | | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | 3 | Total | | Carcass ID Number | 0 | | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 5 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | Tissues/ | | | 4 | 6 | 3 | 7 | 9 | 2 | 4 | 9 | 5 | 6 | 8 | 1 | 0 | 1 | 7 | 0 | 6 | 3 | 5 | 6 | 7 | 9 | 4 | 6 | 7 | Tumors | | Alimentary System | Esophagus | + | 50 | | Intestine large, colon | + | 49 | | Intestine large, rectum | + | 49 | | Intestine large, cecum | + | 48 | | Intestine small, duodenum | + | 49 | | Intestine small, jejunum | + | 49 | | Intestine small, ileum | + | 48 | | Liver | + | 50 | | Hepatocellular adenoma | | | X | 2 | | Mesentery | + | | + | | + | | | | | + | | + | + | | + | | + | + | + | + | | | + | | | 20 | | Pancreas | + | 49 | | Salivary glands | + | 50 | | Stomach, forestomach | + | 50 | |
Stomach, glandular | + | 50 | | Tongue
Squamous cell papilloma | 1 | | Cardiovascular System | Blood vessel | + | 50 | | Heart | + | 50 | | Endocrine System | Adrenal cortex | + | 50 | | Carcinoma, metastatic, mammary gland | 1 | | Adrenal medulla | + | 50 | | Pheochromocytoma benign | | | | | | | | | X | | | | | | | | | | | | | | | | | 2 | | Islets, pancreatic | + | 50 | | Parathyroid gland | + | 49 | | Pituitary gland | + | | + | 50 | | Pars distalis, adenoma | | X | | X
+ | X
+ | | | X | + | + | X | | | | X
+ | | | | | | | | X
+ | X
+ | X
+ | 34 | | Thyroid gland
C-cell, adenoma | + | + | + | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | +
X | + | + | + | + | 50 | | C-cell, carcinoma | | | | | | | | | | | | Λ | Λ | | | | | | | | Λ | | | | | 5 | | General Body System | Peritoneum | + | 50 | | Genital System | Clitoral gland | + | 50 | | Ovary | + | 50 | | Granulosa cell tumor benign | | | | | | | , | | | | | X | | , | | | | | | | | | | | | 1 | | Uterus Polyp stromal | +
X | +
X | + | + | + | + | 50 | | Sarcoma stromal | 1 | | Schwannoma malignant | | | | | | | | | ** | | | | | | | | | | | | | | | | | 1 | | Cervix, sarcoma stromal | | | | | | | | | X | | | | | | | | | | | | | | | | | 1 | | Vagina | | | | | | | | | + | | | | | | | | | | | | | | | | | 2 | | Sarcoma | | | | | | | | | X | | | | | | | | | | | | | | | | | 1 | | | 3 | 1 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | |--------------------------------------|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|--------|--------|---|---|---|---|---|---|---|---|---| | Number of Days on Study | 3
7 | | 0 | | | | | 3 | | | | 7 | | | 7
0 | 7
0 | 0 | 1 | 1 | 2 | 3 | 3 | 3 | 3 | | | tumoet of Days on Study | | | | | | | | | | | | 0 | | | | | | | | | | | | | | | | 3 | | Carcass ID Number | 4 | 1 | 4 | 1 | 3 | 3 | 2 | 4 | 0 | 3 | 1 | 3 | 2 | 0 | 3 | 3 | 4 | 4 | 1 | 4 | 0 | 1 | 2 | 0 | 0 | | | 0 | 5 | 5 | 1 | 4 | 0 | 0 | 2 | 8 | 1 | 8 | 7 | 1 | 9 | 2 | 3 | 9 | 8 | 4 | 3 | 5 | 2 | 8 | 2 | 3 | | Hematopoietic System | Bone marrow | + | | Lymph node | + | | | | | | | | | | | + | | + | | + | | | + | | | + | + | | | | Pancreatic, carcinoma, metastatic, | mammary gland | X | Lymph node, bronchial | M | M | M | M | M | M | + | + | M | M | M | + | M | M | M | + | + | M | M | M | M | M | M | M | M | | Lymph node, mandibular | M | | Lymph node, mesenteric | + | | Lymph node, mediastinal | + | + | + | + | + | M | + | + | M | + | + | + | + | + | + | + | + | + | + | + | M | + | M | M | + | | Carcinoma, metastatic, mammary gland | X | Spleen | + | | Thymus | + | + | + | + | + | + | + | + | M | + | + | + | + | + | M | + | + | + | + | + | + | + | M | + | + | | ntegumentary System | Mammary gland | + | | Adenoma | | | | | | | | | | | | Χ | | | | | | | | | | | | | | | Carcinoma | X | | | | | | | | | | | | | | | Χ | | | Χ | | | | | | X | | Carcinoma, multiple | Fibroadenoma | | | | | | | Χ | Χ | | | Χ | | | Χ | | | Χ | Χ | Χ | | | | | | | | Fibroadenoma, multiple | | | | | | | | | X | | | | | | | | | | | Χ | X | | X | | X | | Skin | + | | Basal cell carcinoma | Musculoskeletal System | Bone | + | | Vertebra, osteosarcoma | | X | Skeletal muscle | | | | | | | | + | | | | | | | | + | | | | | | | | | | | Nervous System | Brain | + | | Peripheral nerve | | _ | | | | | | + | | | | | | | | | | | | | | | | | | | Spinal cord | | Ι | | | | | | + | | | | | | | | | | | | | | | | | | | Respiratory System | Larynx | + | | Lung | + | | Carcinoma, metastatic, mammary gland | X | _ | Osteosarcoma, metastatic, bone | | X | Nose | + | | Pleura | + | | Trachea | + | | Special Senses System | Ear | F. | | _ | + | T | + | + | + | + | + | + | Α | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Eye
Harderian gland | | | | 1 | | | | | + | | | + | | | + | | + | | | | | | | | | | Individual Animal Tumor Pathology | of Fe | na | le] | Rat | ts i | n t | he | 2- | Yea | ar | Inł | nal | atio | on | Stu | ıdy | of | D | ivi | nyl | be | nz | ene | e-H | P: | 100 ppm | |---|-----------------------------| | Number of Days on Study | 7
3
2 7
3
3 | | | Carcass ID Number | 3
0
4 | 0 | 3
1
3 | 3
1
7 | 3
1
9 | 3
2
2 | 3
2
4 | | 3
3
5 | 3
3
6 | 3
3
8 | | | 3
0
1 | | | 3
1
6 | 3
2
3 | 3
2
5 | 3
2
6 | | 3
3
9 | 3
4
4 | | 3
4
7 | Total
Tissues/
Tumors | | Hematopoietic System | Bone marrow Lymph node Pancreatic, carcinoma, metastatic, | + | 50
10 | | mammary gland Lymph node, bronchial Lymph node, mandibular Lymph node, mesenteric | | M | M | M | + | M | M | M | M | M | M | M | M | M
M
+ | M | M | M | M | M | M | M | M | M | M | M | 1
9
1
50 | | Lymph node, mediastinal Carcinoma, metastatic, mammary gland Spleen | + | | | | | | | | | | | | | + | | | | | | | | | | | | 37
1
50 | | Thymus | + | + | + | + | + | + | M | M | | | | + | + | + | + | + | M | + | + | + | M | + | + | + | + | 41 | | Integumentary System Mammary gland Adenoma | + | 50 | | Carcinoma Carcinoma, multiple Fibroadenoma Fibroadenoma, multiple | X | | | | | | | X | | | | | | X | | X | X | X
X | | X | | X | | | X | 4
1
14
8 | | Skin
Basal cell carcinoma | +
X | + | + | + | + | 50 | | Musculoskeletal System
Bone | + | _ | + | + | + | + | + | + | + | + | + | + | _ | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Vertebra, osteosarcoma
Skeletal muscle | | + | | | · | · | | | · | | • | | · | | | · | | | | • | | , | · | | | 1 3 | | Nervous System
Brain | + | + | + | + | + |
+ | 50 | | Peripheral nerve
Spinal cord | | + | 2 2 | | Respiratory System Larynx Lung | + + | ++ | + + | ++ | ++ | +++ | ++ | +++ | ++ | ++ | ++ | +++ | ++ | + | +++ | +++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | + + | 50
50 | | Carcinoma, metastatic, mammary gland
Osteosarcoma, metastatic, bone | 1
1 | | Nose
Pleura
Trachea | + + + | + + | + + | + + + | + + | + + + | + + + | + + + | + + | + + | + + | + + + | + + | + + | + + + | + + + | + + + | + + + | + + + | + + | + + | + + + | +++ | + + + | + + | 50
50
50 | | Special Senses System Ear | | | | | | | | | | | | | | | + | | | | | | | | | | | 1 | | Eye
Harderian gland
Lacrimal gland | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | +
+
+ | + | + | + | + | + | + | + | + | + | 48
50
1 | | Individual Animal Tumor Pathol | ogy of Fe | ma | le] | Rat | s i | n tl | he | 2-1 | Yea | ar I | nh | ala | atio | n | Stu | ıdy | of | Di | vii | ıyl | bei | nze | ene | -H | P: 10 | 0 ppr | n | |---|-----------|-----|--------|--------|--------|------|--------|--------|--------|------|--------|--------------|------|--------|--------|--------|--------|--------------|--------|--------|-----|-----|--------|-----|--------|-------|---| | Number of Days on Study | | 4 | 5 | 5
4 | 5
4 | ٠. | 6 | 6 | 6 | 6 | 6
7 | 6
7 | 6 | 6 | 7
0 | 7
0 | 7
0 | 7
1 | 7
1 | 7
2 | 7 | 7 | 7 | 7 | 7
3 | | | | | 4 | 7 | 6 | 2 | 3 | 1 | 7 | 8 | 2 | 6 | 0 | 0 | 8 | 6 | 3 | 3 | 8 | 1 | 5 | 9 | 1 | 1 | 1 | 2 | 2 | | | | | 3 | | | | Carcass ID Number | 4 | 1 5 | 4
5 | 1 | 3 | 3 | 2 | 4 | 0 | 3 | 1 8 | 3
7 | 2 | 0
9 | 3 | 3 | 4 | 4
8 | 1 | 4 | 0 | 1 2 | 2 8 | 0 2 | 0 3 | | | | Ilwin our System | Urinary System
Kidney | + | | | | Urinary bladder | + | | | | Systemic Lesions | Multiple organs
Leukemia mononuclear | + | + | + | X | + | X | Υ
X | +
X | +
X | + | + | ⁺ | + | +
X | +
X | + | + | ⁺ | + | +
X | + | | +
X | + | + | | | | Individual Animal Tumor Pathology of | Fe | ma | le l | Rat | ts i | n t | he | 2- | Yea | ar] | [nh | ıala | atio | on | Stu | ıdy | of | Di | vir | ıyl | bei | ıze | ne | -Н | P: | 100 ppm | |--|--------|----|--------|--------|------|-----|----|----|--------|------|-----|--------|------|--------|-----|-----|----|----|-----|--------|-----|-----|----|----|----|--------------------| | Number of Days on Study | 7 | | | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | G IDV I | | 3 | Total | | Carcass ID Number | 0
4 | 0 | 3 | 7 | 9 | 2 | 4 | 9 | 5 | 6 | 8 | 1 | 0 | 1 | 7 | 0 | 6 | 3 | 5 | 6 | 7 | 9 | 4 | 6 | 7 | Tissues/
Tumors | | Urinary System | Kidney
Urinary bladder | + | 50
50 | | Systemic Lesions Multiple organs Leukemia mononuclear | + | + | +
X | +
X | + | + | + | + | +
X | + | + | +
X | + | +
X | + | + | + | + | + | +
X | + | + | + | + | + | 50
18 | | N. J. 6D. 6. J | | 4 | 4 | 4 | 5 | 5 | 5 | | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | |--|--------|---|--------|--------|---|--------|--------|--------|--------|--------|--------|--------|--------|---|--------|---|----|--------|---|--------|--------|--------|-----|-----|---| | Number of Days on Study | 7
4 | 8 | | 9
7 | 0 | | | 1 | 5
4 | | 7 | | 1 | | 1
5 | | 2 | 3 | 3 | 3 | 3 | 3 | 3 2 | 3 2 | Carcass ID Number | 5
1 | 5 | 5
4 | 5 | 5 | 5
0 | 5 | 5
5 | 5
1 | 5
2 | 5
4 | 5
4 | 5
2 | 5 | 5 | 5 | 5 | 5
0 | 5 | 5
2 | 5
3 | 5
3 | 5 | | 5 | | Carcass ID Ivanioci | 9 | - | 9 | 7 | 6 | | | | | | | | | | 0 | | | | | | | | | | | | Alimentary System | Esophagus | + | | Intestine large, colon | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Intestine large, rectum | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Intestine large, cecum | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Intestine small, duodenum Intestine small, jejunum | + | T | | T
_ | T | т
Т | A
A | + | + | + | + | + | + | + | + | + | + | + | + | + | T | + | + | + | + | | Intestine small, ileum | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Liver | + | | Hepatocellular carcinoma | | | | | | | | • | | | | • | X | | | | | | | | | | | | | | Hepatocellular adenoma, multiple | Mesentery | | | | + | | | | | | | | | | + | + | | | + | + | | + | | + | | + | | Carcinoma, metastatic, liver | | | | | | | | | | | | | X | | | | | | | | | | | | | | ancreas | + | | alivary glands | + | | tomach, forestomach | + | + | + | + | + | + | A
A | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | tomach, glandular
ongue | + | | - | - | - | - | A | 7 | - | - | - | 7 | | - | 7 | + | 7" | 7" | T | 7 | - | т | т | _ | т | | ooth | + | Cardiovascular System | Blood vessel | + | | eart | + | | Endocrine System | Adrenal cortex | + | | Adrenal medulla Pheochromocytoma malignant | + | + | + | +
X | + | | Pheochromocytoma mangnant Pheochromocytoma benign | | | | Λ | | | | | | | | | | | | | | | | | | Х | | | Х | | Islets, pancreatic | + | | + | + | | Adenoma | Parathyroid gland | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | M | + | + | + | + | + | + | + | | Pituitary gland | + | + | + | + | + | + | + | + | + | | | | | | + | | | | | | | | | | | | Pars distalis, adenoma | | | | X | | | X | | | | | | X | | | | | | | | | | | X | | | Thyroid gland | + | | C-cell, adenoma | | | | | | | | | | | | | | | v | | | | | | | | | | | | C-cell, carcinoma | | | | | | | | | | | | | | | X | | | | | | | | | | | | General Body System | Peritoneum | + | | Genital System | Clitoral gland | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | | Carcinoma | | | | | | , | | , | , | | | , | | , | | X | | | | | | | | | | | Ovary | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | | + | + | + | + | + | + | + | | Uterus | + | | Number of Days on Study 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | | _ | | | | _ | _ | _ | | | | | | | | | | | | | | | | _ | _ | | | |--|--------------------|--------|----------|--------|--------|--------|--------|---|--------|---|---|---|---|---|---|---|---|---|---|---|---|--------|---|---|---|--------|---|---------------------------| | Carcass ID Number 5 5 5 5 5 5 5 | | 7
3 | | 7 | | | mber of Days on Study | | Alimentary System Sophagus | | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | Alimentary System Esophagus + + + + + + + + + + + + + + + + + + + | Total | 5 | | | Seophagus | Tissues/
Tumors | | | | 1
8 | 1
7 | | | 1
1 | | | | - | | | - | | | | | | | | | | | | rcass ID Number | | Seophagus | mentary System | | Intestine large,
colon | 50 | + | | | Intestine large, rectum | 49 | + | | | Intestine large, cecum | 49 | + | | | Intestine small, duodenum | 49 | + | | | Intestine small, jejunum | 49 | + | | | Intestine small, ileum | 49 | + | | | Liver | 49 | + | | | Mesontery | 50
1 | + | er | | Mesentery Carcinoma, metastatic, liver Pancreas | 2 | | | X | X | | | | | Salivary glands | 17
1 | + | | + | | | | + | | | | | + | + | + | | | | | | | + | | | | + | + | sentery | | Stomach, forestomach + + + + + + + + + + + + + + + + + + + | 50 | + | creas | | Stomach, glandular | 50 | + | vary glands | | Tongue Tooth Cardiovascular System Blood vessel | 49 | + | mach, forestomach | | Cardiovascular System Blood vessel | 49 | + | mach, glandular | | Blood vessel | 3 | | | | | | | | | | | + | | | | | | | | | | | + | | | | | | | Heart + + + + + + + + + + + + + + + + + + + | rdiovascular System | | Endocrine System Adrenal cortex | 50 | + | od vessel | | Adrenal cortex | 50 | + | ırt | | Adrenal medulla | 50 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | Pheochromocytoma malignant Pheochromocytoma benign Islets, pancreatic Adenoma Parathyroid gland + + + + + + + + + + + + + + + + + + + | 50 | T | + | T
_ | T
_ | T
_ | T
_ | | T
_ | T | _ | | | _ | | T | | | | | T | | | | | _ | | | | Selets, pancreatic | 1 | Т | _ | Т | Т | Т | | | Т | | _ | Т | _ | _ | | | | _ | Т | Т | Т | Т | _ | _ | | Т | | heochromocytoma malignant | | Adenoma Parathyroid gland + + + + + + + + + + + + + + + + + + + | 50 | + | + | + | + | + | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Parathyroid gland | 1 | | • | | - | - | • | | - | - | • | - | - | | | | | | | , | | | - | - | • | | | | | Pituitary gland | 47 | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | Μ | + | + | + | + | + | + | + | + | + | + | | | Pars distalis, adenoma X X X X X X X X X X X X X X X X X X X | 50 | + | + | + | + | + | | | | + | + | + | + | + | + | | | + | + | + | + | + | + | + | + | + | + | | | Thyroid gland | 39 | X | | X | X | | Χ | | X | X | Х | Χ | Χ | | | X | | X | X | X | X | X | X | Χ | X | X | X | | | C-cell, adenoma C-cell, carcinoma General Body System Peritoneum | 50 | + | + | + | + | + | | | + | + | + | + | + | + | + | | + | | | | | | | | | | | | | General Body System Peritoneum + + + + + + + + + + + + + + + + + + + | 1
1 | | | | | | X | -cell, adenoma | | Genital System Clitoral gland + + + + + + + + + + + + + + + + + + + | neral Rady System | | Clitoral gland + + + + + + + + + + + + + + + + + + + | 50 | + | Carcinoma | 50 | + | | | | 1 | | , | | | , | , | Ovary + + + + + + + + + + + + + + + + + + + | 50 | + | | | Uterus + + + + + + + + + + + + + + + + + + + | 50
8 | + | + | + | + | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | +
v | + | + | + | †
V | + | | | | 2 | 4 | 4 | 4 | _ | - | 5 | . , | | , | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | |--|--------|---|--------|--------|--------|---|-----|-----|------------|--------|--------|---|--------|--------|--------|----|----|--------|--------|---|--------|--------|--------|--------| | Number of Days on Study | 3
7 | 8 | 4
9 | 9 | | | | | 6 6 | | | | 7
1 | | 7
2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | | 7
3 | | v | 4 | 1 | 3 | 7 | 0 | 2 | | | 6 | | | | | | 2 | 6 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | | | 5 | 5 | 5 | 5 | 5 | 5 | 5 : | 5 5 | 5 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | | Carcass ID Number | 1
9 | | 4
9 | 2
7 | 1
6 | | 0 (| | 2 | 4
4 | 4
6 | | | | | | 0 | | 2
8 | | 3
7 | 0
1 | 0
4 | | | Hematopoietic System | Bone marrow | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Lymph node | | | + | | + | | | | | + | + | | | | + | + | | | | | + | | | | | Lymph node, bronchial | | | | | | | | | 1 + | | | | | | | | | | | | | | | | | Lymph node, mandibular | M | | | | | | | | 1 M
- + | | | | | | | | | М
+ | M
+ | | M
+ | | M
+ | | | Lymph node, mesenteric Lymph node, mediastinal | + | | | | | | + - | | | + | + | + | + | + | | + | | + | + | + | + | | + | | | Spleen | + | + | | + | | | + - | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Гhymus | + | + | M | M | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Thymoma malignant | Integumentary System | Mammary gland | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Carcinoma | Carcinoma, multiple
Fibroadenoma | | | | | | | | | Y | X | | X | Y | | | v | X | v | | | X | | | | | Fibroadenoma, multiple | | | | | | | | | Λ | 1 | | 1 | | X | | 71 | 21 | 1 | X | X | 71 | | | | | Skin | + | + | + | + | + | + | + - | + + | + | + | + | + | | + | + | + | + | + | | | + | + | + | + | | Subcutaneous tissue, lipoma | Musculoskeletal System | Bone | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Skeletal muscle | | | | | | | | | | + | | + | + | | | | | | | + | | | | | | Nervous System | Brain Astrocytoma malignant | +
X | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Peripheral nerve | Λ | | | | | | | | | + | | + | | | | | | | | + | | | | | | Spinal cord | | | | | | | | | | + | | + | | | | | | | | + | | | | | | Respiratory System | Larynx | + | + | + | + | + | + | Α - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Lung | + | + | + | + | + | + | + - | + + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | | Carcinoma, metastatic, liver | | | | | | | | | | | | X | | 37 | | | | | | | | | | | | Carcinoma, metastatic, thyroid gland | .1 | | | _ | _ | _ | Α - | + + | - + | + | + | + | | X
+ | + | + | + | _ | + | _ | _ | | | _ | | Nose
Pleura | + + | + | + | + | + | + | A - | + + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Trachea | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Special Senses System | Ear | | | | | | | | | | | | | | + | | | | | | | | | | | | Eye | + | + | + | + | + | + | Α - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Harderian gland | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Number of Days on Study | 7 | | 7 | | |--------------------------------------|-----|--------|--------|---|--------|---|---|---|--------|--------|--------|---|--------|--------|--------|---|---|---|---|---|---|---|--------|--------|---|--------------------| | Number of Days on Study | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | 3 | 3 | | 3 | | 3 | 3 | 3 | 3 | | | | | 5 | Total | | Carcass ID Number | 2 3 | 2
4 | 2
5 | | 2
9 | | | 3 | 3
8 | 4
0 | 4
1 | 4 | 4
5 | 4
7 | 4
8 | | | 1 | | | | | | 3
9 | 4 | Tissues,
Tumors | | Hematopoietic System | Bone marrow | + | 50 | | Lymph node | | + | | | | | | | | | | | | + | | | | | | | | | | | | 9 | | Lymph node, bronchial | M | + | M | M | M | M | M | M |
M | M | M | M | M | M | M | M | Μ | M | M | M | M | M | M | M | M | 5 | | Lymph node, mandibular | M | M | M | M | M | + | M | M | M | M | M | M | M | + | M | M | M | M | M | M | M | M | M | M | M | 5 | | Lymph node, mesenteric | + | 50 | | Lymph node, mediastinal | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | M | + | + | M | + | + | + | + | + | + | 44 | | Spleen | + | 50 | | Thymus Thymoma malignant | + | + | + | + | M | M | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 46
1 | | Integumentary System | Mammary gland | + | 50 | | Carcinoma | | | | | X | X | | | | | | | | | | | | | | | | X | | | | 3 | | Carcinoma, multiple | | | | | | | | | X | | | | | | | | | | | | | | | | | 1 | | Fibroadenoma | | | | | | | X | | | X | X | | X | | | | | | | | | | | X | | 13 | | Fibroadenoma, multiple | X | | | | X | | | | | | | | | | | | | | | | | X | | | | 6 | | Skin
Subcutaneous tissue, lipoma | +
X | + | + | 50
1 | | Musculoskeletal System | Bone
Skeletal muscle | + | 50
7 | | Nervous System | 5.0 | | Brain Astrocytoma malignant | + | 50 | | Peripheral nerve
Spinal cord | | | | | | + | | | | | | | | | | | + | | | | | + | | | | 6 | | Respiratory System | Larynx | + | 49 | | Lung Carcinoma, metastatic, liver | + | 50 | | Carcinoma, metastatic, thyroid gland | 1 | | Nose | + | 49 | | Pleura
Trachea | + | 50
50 | | Special Senses System | Ear | | | | | | | | | | | | | | | | | + | | | | | | | | | 2 | | Eye | + | 49 | | Harderian gland | + | 50 | | TABLE B2
Individual Animal Tumor Patholog | y of Fer | nal | le l | Rat | s i | n tl | he | 2-Y | /ea | r I | nh | ala | tic | n S | Stu | ıdy | of | D i | ivii | nyl | bei | nze | ene | -Н | P: 200 ppm | |--|----------|-----|------|-----|-----|------|----|-----|-----|-----|----|-----|-----|-----|-----|-----|----|------------|------|-----|-----|-----|-----|----|------------| | | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | Number of Days on Study | 7 | 8 | 9 | 9 | 0 | 8 | 8 | 1 | 5 | 6 | 7 | 0 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | 4 | 1 | 3 | 7 | 0 | 2 | 6 | 4 | 4 | 6 | 3 | 4 | 1 | 2 | 5 | 2 | 6 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | | | 5 | | Carcass ID Number | 1 | 0 | 4 | 2 | 1 | 0 | 3 | 5 | 1 | 2 | 4 | 4 | 2 | 3 | 1 | 2 | 1 | 0 | 0 | 2 | 3 | 3 | 0 | 0 | 0 | | Carvaso 12 1 vambor | 9 | 9 | 9 | 7 | 6 | 5 | 0 | 0 | 4 | 2 | 4 | 6 | 1 | 5 | 0 | 0 | 3 | 2 | 8 | 8 | 1 | 7 | 1 | 4 | • | | Jrinary System | Kidney | + | + | + | + | + | + | Α | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Jrinary bladder | + | + | + | + | + | + | Α | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Transitional epithelium, carcinoma | | | | | | | | X | | | | | | | | | | | | | | | | | | | Systemic Lesions | Multiple organs | + | | Leukemia mononuclear | | | X | | X | | | | | | | | | | X | | Χ | | | | | | X | | X | | Individual Animal Tumor Patholo | gy of Fe | nal | le F | Rat | s iı | n tl | he : | 2-Տ | Yea | ar l | [nh | ala | atio | n S | Stu | ıdy | of | Di | ivi | nyl | be | nze | ene | -H | P: | 200 ppm | |------------------------------------|----------|-----|------|-----|------|------|------|-----|-----|------|-----|-----|------|-----|-----|-----|----|----|-----|-----|----|-----|-----|----|-----------|----------| | | 7 | | | Number of Days on Study | 3 | | | v | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | 5 | Total | | Carcass ID Number | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 4 | Tissues/ | | | 3 | 4 | 5 | 6 | 9 | 2 | 3 | 4 | 8 | 0 | 1 | 2 | 5 | 7 | 8 | 3 | 6 | 1 | 2 | 5 | 7 | 8 | 6 | 9 | 3 | Tumors | | Urinary System | Kidney | + | 49 | | Urinary bladder | + | 49 | | Transitional epithelium, carcinoma | 1 | | Systemic Lesions | Multiple organs | + | 50 | | Leukemia mononuclear | | X | | | X | X | | | | | | | | X | X | | | | | X | X | | X | | X | 22 | | Individual Animal Tumor Patholog | 5, 0110 | | | | | | | | | | | | | | | J | | | J | | | | | | 1.1 | |---|---------|----|---|---|---|---|---|---|---|----|----|----|---|---|-----|----------|----------|------|-----|-----|------------|-----|-----|-----|-----| | | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 (| 5 6 | 6 | 5 6 | 5 | 6 6 | 5 6 | 6 | 6 | | Number of Days on Study | 5 | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 5 | 6 | 8 | 8 | 8 | 0 | 0 | 1 | 1 2 | 2 2 | 3 | 5 | 5 | 5 5 | 5 5 | 5 | 8 | | | 1 | 6 | 3 | 5 | 9 | 5 | 5 | 0 | 1 | 3 | 6 | 6 | 9 | 0 | 0 | 3 | 7 (| 5 6 | 1 | . 3 | 3 | 3 6 | 5 (| 6 | 4 | | | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 7 | , , | , , | , - | 7 | 7 7 | , , | 7 | 7 | | Carcass ID Number | 2 | 3 | 1 | 4 | 0 | 0 | 4 | 4 | 0 | 2 | 2 | 3 | | | 3 | 0 | 2 (|) 1 | 4 | . 1 | | 1 (|) : | 3 | • | | | 1 | 2 | 2 | 6 | | | 1 | | | | | | | | | | 9 8 | | | | | 9 2 | | | | | Alimontony System | Alimentary System
Esophagus | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | <u>.</u> | <u> </u> | | | | L . | | | ⊥ . | _ | | intestine large, colon | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + . | + - |
 | - T | | - · | + - | | r . | + | | Intestine large, colon | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + . | + . | '
+ - | · · | - + | | '
⊢ . | + - | _ | + . | + | | intestine large, rectum | + | + | + | + | + | + | + | À | + | + | + | + | + | + | + | + . | + - | · · | - + | - 4 | '
 | + - | | + . | + | | Intestine large, eccum | + | + | + | + | + | + | + | + | + | + | | | + | + | + | + - | + - | + + | - + | . 4 | | + - | | + | + | | Intestine small, jejunum | + | + | + | A | + | + | + | A | + | + | | | | + | + | + . | + - | + + | - + | - 4 | <u> </u> | + - | | + | + | | Intestine small, ileum | + | + | + | A | + | + | + | A | | | | | | | | | + - | + + | - + | - 4 | | + - | | + | + | | Liver | + | + | + | + | + | + | + | + | + | + | | | | | | | + - | | | - 4 | . | + - | | + | + | | Mesentery | | | | | | | + | | | | | | | | | + | | | | | | | | | | | Pancreas | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + . | + - | + + | - + | - + | - - | + - | | + | + | | Salivary glands | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | - | + - | | + | + | | Stomach, forestomach | + | + | + | Α | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | | + - | + + | + | + | | Stomach, glandular | + | + | + | Α | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | | + - | + + | + | + | | Tongue | | | | | | | | | | + | | | | | | | | | | | | | + | + | | | Squamous cell papilloma | Cardiovascular System | Blood vessel | + | + | + | + | + | + | + | | | | | | | + | | | + - | | | - + | + - | + - | + + | + | + | | Heart | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | - | + - | + + | + | + | | Endocrine System | | | | | | , | , | , | | | | | | | | | | | | | | | | | | | Adrenal cortex | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + . | + - | + + | - + | - + | | + - | | + | +
 | Carcinoma | | | | , | | | | | | | , | , | | | | | | | | | | | | | | | Adrenal medulla | + | + | + | + | + | + | + | + | + | + | + | | | + | + | + - | + - | - + | - + | - + | | + - | | + | + | | Pheochromocytoma malignant | | | | | | | | | | | | | X | | | | | | | | | | • | v | | | Pheochromocytoma benign | 2 | X | | | Bilateral, pheochromocytoma benign Islets, pancreatic | _ | + | + | _ | _ | _ | + | + | + | + | + | + | + | + | + | + - | + - | | 1 | | <u>.</u> | + - | | + | + | | Adenoma | | 7" | X | Т | Т | Г | г | | 1 | 1- | 1. | 1. | 1 | ' | 1 | ' | | 7 | Т | ٦ | | | | ' | | | Carcinoma | | | Λ | | | X | Parathyroid gland | M | + | + | + | + | | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - 4 | <u> </u> | + - | | + | + | | Pituitary gland | + - | | | | | Pars distalis, adenoma | ' | | | | X | | X | | X | | X | | | | | | | | ' | Σ | | 2 | | | - | | Thyroid gland | + | + | + | + | | + | | | | | | | | | + | + - | + - | + + | - + | | | + - | | + | + | | C-cell, adenoma | | | | | | | | | | X | | | | | | | | | | | | | | X | | | General Body System | Peritoneum | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | - | + - | + + | + | + | | Genital System | Clitoral gland | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | + - | + + | - + | - + | + - | + - | + + | + | + | | Ovary | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | + - | + - | + + | + | + | | Jterus | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | - | + - | + + | + | + | | Carcinoma | Polyp stromal | | | | | | | | | | | | | X | | | | | | | | | 7 | ζ. | | | | Bilateral, polyp stromal | X | | Vagina | + | | | | | | | | + | | | | | | | | | | | | | | | | + | | | 7 | | |---|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---|--------|--------|--------|--------|--------|--------|---|--------|---|--------|--------|---|--------|--------|-------------------| | Number of Days on Study | 0 | 0 | 1 | 3 | | | | 8 | 8 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | | | | 7 | Tota | | Carcass ID Number | 2
5 | 3
1 | 1
4 | 0
4 | 2
4 | 2
8 | 3
7 | 4
0 | 4
2 | 0
5 | 1 | 1
8 | 2
7 | 3
4 | 3
5 | 3
6 | 3
8 | 4 | 4 | 5 | 0
7 | 1
5 | 2 | 4
5 | 4
7 | Tissues
Tumors | | Alimentary System | Esophagus | + | 50 | | Intestine large, colon | + | 50 | | Intestine large, rectum | + | 50 | | Intestine large, cecum | + | 49 | | Intestine small, duodenum | + | 5(| | Intestine small, jejunum Intestine small, ileum | + | 48
48 | | Liver | + | 5(| | Mesentery | ' | | | | ' | | | | | + | | | + | | ' | + | ' | | | | | | | + | | (| | Pancreas | + | 5(| | Salivary glands | + | 50 | | Stomach, forestomach | + | 49 | | Stomach, glandular | + | 49 | | Tongue
Squamous cell papilloma | +
X | | | | | 3 | | Cardiovascular System | Blood vessel | + | 50 | | Heart | + | 50 | | Endocrine System | Adrenal cortex | + | 50 | | Carcinoma | | | | | | | | | | | | | | + | X
+ | + | | | | | | | | | | 5(| | Adrenal medulla Pheochromocytoma malignant | + | 30 | | Pheochromocytoma benign | 1 | | Bilateral, pheochromocytoma benign | X | 1 | | Islets, pancreatic | + | 50 | | Adenoma | 1 | | Carcinoma | 1 | | Parathyroid gland | + | 49 | | Pituitary gland | + | +
X | + | + | + | + | + | +
v | + | + | + | + | + | + | +
v | + | +
v | + | + | + | + | +
v | + | + | + | 50 | | Pars distalis, adenoma
Thyroid gland | | | Λ
+ | + | + | Λ
+ | Λ
+ | | Λ
+ | Λ
+ | X | Λ
+ | + | Λ
+ | X
+ | Λ
+ | | | Λ
+ | | _ | X
+ | + | X
+ | _ | 28
50 | | C-cell, adenoma | | | | | | | Т | Т | X | | | Τ | | _ | Т | _ | X | Т | | | Т | Τ | | | Т | 2 | | General Body System | Peritoneum | + | | 49 | | Genital System | Clitoral gland | + | 50 | | Ovary | + | 5(| | Uterus | + | 50 | | Carcinoma Polyn stromal | | | | | | | | X | | X | | | X | | | | | | v | | | | | | v | 1 | | Polyp stromal
Bilateral, polyp stromal
Vagina | | | | | | | | Λ | | Λ | | | | | | | | | X | | | | | | X | 1 | | Nl CD C4 | | | | 5 | | | | | | | 5 5 | | | | | | | | | | | | | | |---|-----|---|-----|--------|---|--------|--------|---|--------|-----|------------|---|--------|---|---|---|--------|---|--------|---|--------|--------|--------|---| | Number of Days on Study | 5 | | | | | 3
5 | 3
5 | | 5
1 | | 8 8
6 6 | | 0 | | 1 | | | | | | | | 5
6 | | | | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | Carcass ID Number | 2 | - | 1 2 | 4
6 | 0 | 0 | | | | | 2 3 | | 1
6 | 3 | 9 | | 0
8 | | 4
8 | 1 | 1
9 | 0
2 | 3
9 | | | Iematopoietic System | Sone marrow | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | | + | | Lymph node | 3.4 | | | + | | | | | | | | | | | | | | + | | + | + | | + | | | Lymph node, bronchial
Lymph node, mandibular | | | | | | | | | | | И +
И М | | | | | | | | | | | | | | | Lymph node, mesenteric | + | + | | | | | | | + - | | | | + | | | | | | + | + | + | + | | | | Lymph node, mediastinal | + | + | | | | | | | | | + M | | | | | | + | + | + | + | + | | + | | | Spleen | + | + | | | | + | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | | `hymus | + | M | + | + | M | M | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | M | + | + | + | | ntegumentary System | Mammary gland | + | + | | + | + | + | + | + | | | + + | + | | + | + | + | + | + | + | + | + | | + | + | | Fibroadenoma | | | X | | | | | | | X | | | X | | | | | | | | | X | | | | Fibroadenoma, multiple
kin | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | | okiii | ' | | | Ċ | | | | ' | | ' | | | | | | ' | Ċ | | ' | | ' | ' | ' | ' | | Musculoskeletal System | Bone | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Femur, osteosarcoma
Skeletal muscle | okeretai iliusere | Nervous System | Brain | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Peripheral nerve
Spinal cord | phiai coru | Respiratory System |
 | | Larynx | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Lung | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Alveolar/bronchiolar adenoma Osteosarcoma, metastatic, bone | Vose | + | + | + | + | + | + | + | A | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Respiratory epithelium, adenoma | leura | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Osteosarcoma, metastatic, bone | | | | | , | | | 1 | | | | | | | | | , | , | | | | , | | 1 | | rachea | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | | special Senses System | Eye
Jardarian aland | + | + | + | + | + | + | + | A | + + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Harderian gland
Adenoma | + | + | + | + | + | _ | т | т | - | Τ . | - + | + | + | + | _ | _ | _ | Т | + | + | + | + | + | т | | Lacrimal gland | Zymbal's gland | | | | | | | | | | | | | | | | + | | | | | | | | | | Carcinoma | | | | | | | | | | | | | | | | X | | | | | | | | | | | 7 | | | |---|----------|--------|--------|--------|--------|--------|--------------|--------|---|--------|--------|--------|--------|--------|--------|--------|--------|---|--------|--------|--------|--------|---|--------|--------|---------------|---------| | Number of Days on Study | 0 | 0 | 1 | 3 | | | | | 8 | 8 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | | | 2 | 2 | 2 | 2 | 2 | | | 3 | 3 | 3 | | | | | 7 | То | otal | | Carcass ID Number | 2
5 | 3
1 | 1
4 | 0
4 | 2
4 | 2
8 | 3
7 | 4
0 | 4 | 0
5 | 1
0 | 1
8 | 2
7 | 3
4 | 3
5 | 3
6 | 3
8 | 4 | 4
4 | | 0
7 | 1
5 | 2 | 4
5 | | Tissu
Tumo | | | Hematopoietic System | Bone marrow | + | : | 50 | | Lymph node | + | + | + | | | 8 | | Lymph node, bronchial
Lymph node, mandibular | | | | | | | | M
M | | | | | | | | | | | | | | | | | | | 14
3 | | Lymph node, mesenteric | 1VI
+ | | | | | | | + | | | | | | | | | | | | | | | | | | | 50 | | Lymph node, mediastinal | + | | | | | | | M | | | | | | | | | | | | | | | | | | | 34 | | Spleen | | | | | | | | + | | | | | | | | | | | | | | | | | | | 50 | | Thymus | + | M | + | + | M | M | + | M | + | + | + | + | + | + | + | + | + | + | + | M | + | M | M | + | + | : | 39 | | Integumentary System | 50 | | Mammary gland
Fibroadenoma | + | + | + | +
X | + | + | + | + | + | + | + | | +
X | + | + | + | + | + | + | +
X | + | + | + | + | +
X | : | 50
9 | | Fibroadenoma, multiple | X | | X | Λ | | X | | | | | | Λ | Λ | | | | X | | X | Λ | | | | | Λ | | 5 | | Skin | | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | | + | + | + | + | + | + | : | 50 | | Musculoskeletal System | Bone | + | ; | 50 | | Femur, osteosarcoma
Skeletal muscle | | | | | | + | Х | | + | | | + | | | + | | | | + | | | | | | | | 1
5 | | Nervous System | Brain | + | : | 50 | | Peripheral nerve | | | | | | + | | | + | | | + | | | + | | | | + | | | | | | | | 5 | | Spinal cord | | | | | | + | | | + | | | + | | | + | | | | + | | | | | | | | 5 | | Respiratory System | Larynx | + | | 50 | | Lung Alveolar/bronchiolar adenoma | + | + | + | + | + | + | + | + | + | +
X | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | ; | 50
2 | | Osteosarcoma, metastatic, bone | | | | | | | X | | | 71 | | | 71 | | | | | | | | | | | | | | 1 | | Nose | + | 4 | 49 | | Respiratory epithelium, adenoma | | | | | | | \mathbf{X} | 1 | | Pleura | + | | + | 4 | 49 | | Osteosarcoma, metastatic, bone
Trachea | + | + | + | + | + | + | X
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | : | 1
50 | | Special Senses System | Eye | + | 4 | 49 | | Harderian gland | + | | 50 | | Adenoma | X | | | | | | | 1 | | Lacrimal gland | | | | | | | | | | + | | | | | | | | | | | | | | | | | 1 | | Zymbal's gland | | | | | | | | | | | | | | | | | | + | | | | | | | | | 2 | | TABLE B2
Individual Animal Tumor Pathol | ogy of Fe | ma | le l | Rat | s i | n tl | he : | 2-Y | Z ea | r I | nh | ala | tio | n S | Stu | dy | of | Di | vii | ıyl | bei | nze | ne | -H | P: 400 ppm | |--|-----------|----|------|-----|-----|------|------|-----|------|-----|----|-----|-----|-----|-----|----|----|----|-----|-----|-----|-----|----|----|------------| | | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | Number of Days on Study | 5 | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 5 | 6 | 8 | 8 | 8 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 5 | 5 | 5 | 5 | 8 | | | 1 | 6 | 3 | 5 | 9 | 5 | 5 | 0 | 1 | 3 | 6 | 6 | 9 | 0 | 0 | 3 | 7 | 6 | 6 | 1 | 3 | 3 | 6 | 6 | 4 | | | 7 | | Carcass ID Number | 2 | 3 | 1 | 4 | 0 | 0 | 4 | 4 | 0 | 2 | 2 | 3 | 1 | 1 | 3 | 0 | 2 | 0 | 1 | 4 | 1 | 1 | 0 | 3 | 2 | | | 1 | 2 | 2 | 6 | 1 | 3 | 1 | 9 | 6 | 3 | 6 | 3 | 7 | 6 | 0 | 9 | 9 | 8 | 3 | 8 | 1 | 9 | 2 | 9 | 0 | | rinary System | Cidney Osteosarcoma, metastatic, bone | + | | Jrinary bladder | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Systemic Lesions | Aultiple organs | + | | Leukemia mononuclear | | X | X | X | | X | | X | | X | | | | | | Χ | | Χ | Χ | Χ | X | X | X | X | | TABLE B2 Individual Animal Tumor Pathology of Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP: 400 ppm | Number of Days on Study | 7
0
8 | • | 7
1
2 | 7
3
1 | 7
3
1 | 7
3
1 | 7
3
1 | 7
3
1 | 7
3
1 | 7
3
2 7
3
3 | 7
3
3 | 7
3
3 | - | 7
3
3 | | |--|-----------------------------| | Carcass ID Number | 7
2
5 | 7
3
1 | 7
1
4 | 7
0
4 | 7
2
4 | 7
2
8 | 7
3
7 | 7
4
0 | 7
4
2 | 7
0
5 | 7
1
0 | 7
1
8 | 7
2
7 | 7
3
4 | 7
3
5 | 7
3
6 | 7
3
8 | 7
4
3 | 7
4
4 | 7
5
0 | 7
0
7 | 7
1
5 | 7
2
2 | 7
4
5 | 7
4
7 | Total
Tissues/
Tumors | | Urinary System Kidney Osteosarcoma, metastatic, bone Urinary bladder | + | + | + | + | + | + | +
X
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50
1
49 | | Systemic Lesions Multiple organs Leukemia mononuclear | +
X | +
X | +
X | + | +
X | + | +
X | + | + | + | + | +
X | + | +
X | + | +
X | + | + | + | + | + | + | + | + | + | 50
22 | TABLE B3 Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Adjusted rate b | 400 ppm |
--|--|-----------------| | | Overall rate b | | | dijusted rate | Adjusted rate Terminal Te | 2/50 (4%) | | eminal rate 2 2/33 (%) 1/30 (3%) 3/33 (%) 0/22 (%) oly-3 test 4 oly-3 test 4 oly-3 test 4 oly-3 test 5 oly-3 test 6 oly-3 test 7 1 | Terminal rate rat | ` / | | rist incidence (days) (p)-3 test P-0.566 P-0.683N P-0.516 P-0.566 | First incidence (days) Poly-3 test Pelosof Pe | | | oly-3 tesa | Poly-3 test Poly-3 test Peoly-3 | | | | 2/50 (4%) 2/50 (4%) 4/50 (8%) Adjusted rate 4.7% 4.6% 9.0% Ferminal rate 2/33 (6%) 1/30 (3%) 3/33 (9%) First incidence (days) 731 (T) 696 497 Poly-3 test P=0.300 P=0.683N P=0.361 Civer: Hepatocellular Adenoma or Carcinoma Diverall rate 0/50 (0%) 2/50 (4%) 3/50 (6%) Adjusted rate 0.0% 4.6% 6.8% Ferminal rate 0/33 (0%) 1/30 (3%) 2/33 (6%) First incidence (days) -e 617 711 Continue 1/30 (3%) 1/30 (3%) 1/30 (3%) Continue | | | | 2/50 (4%) 2/50 (4%) 4/50 (8%) Adjusted rate 4.7% 4.6% 9.0% Ferminal rate 2/33 (6%) 1/30 (3%) 3/33 (9%) First incidence (days) 731 (T) 696 497 Poly-3 test P=0.300 P=0.683N P=0.361 Civer: Hepatocellular Adenoma or Carcinoma Description of the property propert | | | djusted rate | Adjusted rate 4.7% 4.6% 9.0% Ferminal rate 2/33 (6%) 1/30 (3%) 3/33 (9%) First incidence (days) 731 (T) 696 497 Poly-3 test P=0.300 P=0.683N P=0.361 Liver: Hepatocellular Adenoma or Carcinoma Overall rate 0/50 (0%) 2/50 (4%) 3/50 (6%) Adjusted rate 0.0% 4.6% 6.8% Ferminal rate 0/33 (0%) 1/30 (3%) 2/33 (6%) First incidence (days) - 617 711 | 3/50 (6%) | | eminal rate 2/33 (6%) 1/30 (3%) 3/33 (9%) 0/22 (0%) irsis incidence (days) 731 (T) 696 497 589 oly-3 test P-0.300 P-0.683N P-0.361 P-0.458 vereil rate 0/50 (0%) 2/50 (4%) 3/50 (6%) 0/50 (0%) (1/50 (0%) 2/50 (4%) 3/50 (6%) 0/50 (0%) (1/50 (0%) 4.6% 6.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0 | Ferminal rate 2/33 (6%) 1/30 (3%) 3/33 (9%) First incidence (days) 731 (T) 696 497 Poly-3 test P=0.300 P=0.683N P=0.361 Liver: Hepatocellular Adenoma or Carcinoma Overall rate 0/50 (0%) 2/50 (4%) 3/50 (6%) Adjusted rate 0.0% 4.6% 6.8% Ferminal rate 0/33 (0%) 1/30 (3%) 2/33 (6%) First incidence (days) 617 711 | ` / | | irst incidence (days) | First incidence (days) 731 (T) 896 497 P=0.300 P=0.683N P=0.361 F=0.361 F=0.683N P=0.361 F=0.361 F=0.683N F=0.361 F=0.361 F=0.683N F=0.361 F=0.361 F=0.683N F=0.361 F=0.683N F=0.361 F=0.683N F=0.361 F=0.683N F=0.361 F=0.683N F=0.683N F=0.361 F=0.361 F=0.683N F=0.683N F=0.361 F=0.683N F=0 | | | oly-3 test P=0.300 P=0.683N P=0.361 P=0.458 vier: Hepatocellular Adenoma or Carcinoma verall rate | Pely-3 test Pely-300 Pely-83N Pely-361 Liver: Hepatocellular Adenoma or Carcinoma Overall rate 0/50 (0%) 2/50 (4%) 3/50 (6%) Adjusted rate 0.0% 4.6% 6.8% Ferminal rate 0/33 (0%) 1/30 (3%) 2/33 (6%) First incidence (days) e 617 711 | ` / | | iver: Hepatocellular Adenoma or Carcinoma verall rate | Liver: Hepatocellular Adenoma or Carcinoma Overall rate 0/50 (0%) 2/50 (4%) 3/50 (6%) Adjusted rate 0.0% 4.6% 6.8% Terminal rate 0/33 (0%) 1/30 (3%) 2/33 (6%) Perminal rate incidence (days) 617 711 | | | Necral Trate 0.750 (0%) 2.750 (4%) 3750 (6%) 0.750 (0%) 0. | overall rate 0/50 (0%) 2/50 (4%) 3/50 (6%) odjusted rate 0.0% 4.6% 6.8% erminal rate 0/33 (0%) 1/30 (3%) 2/33 (6%) irst incidence (days) - 617 711 | 1-0.436 | | djusted rate | djusted rate 0.0% 4.6% 6.8% erminal rate 0/33 (0%) 1/30 (3%) 2/33 (6%) irst incidence (days) — 617 711 | 0/50 (0%) | | erminal rate | Ferminal rate 0/33 (0%) 1/30 (3%) 2/33 (6%) First incidence (days) — 617 711 | ` /
| | rist interlectic (gays) — 617 / 71 — 7 Feb. 19-0.96N P=0.245 P=0.125 — 7 Feb. 19-0.125 | rist incidence (days) — 617 /11 | | | Page | | ` / | | Nammary Gland: Fibroadenoma Survey | 01y-5 test r=0.390N r=0.245 P=0.125 | f | | Nevrall rate 20/50 (40%) 22/50 (44%) 19/50 (38%) 14/50 (28%) | | _ | | djusted rate 46.5% 48.4% 42.7% 35.2% 35.2% cerminal rate 15/33 (46%) 12/30 (40%) 13/33 (39%) 8/22 (36%) oly-3 test P=0.133N P=0.512 P=0.441N P=0.200N P=0.341N P=0.200N P=0.341N P=0.200N P=0.341N P=0.200N P=0.341N P=0.341N P=0.200N P=0.341N P=0.200N P=0.341N P=0.341N P=0.200N P=0.341N P=0.341N P=0.341N P=0.200N P=0.341N P=0.34 | Mammary Gland: Fibroadenoma | 14/50 (200/) | | erminal rate 15/33 (46%) 12/30 (40%) 13/33 (39%) 8/22 (36%) irst incidence (days) 631 617 666 523 obly-3 test P=0.133N P=0.512 P=0.441N P=0.200N | | , , , | | irst incidence (days) oly-3 test P=0.133N P=0.512 P=0.441N P=0.200N Immary Gland: Fibroadenoma or Adenoma Fibroadenom | , | | | P=0.133N | | | | Nammary Gland: Fibroadenoma or Adenoma Part P | | | | Neverall rate 20/50 (40%) 23/50 (46%) 19/50 (38%) 14/50 (28%) | oly-3 test P=0.133N P=0.512 P=0.441N | P=0.200N | | djusted rate 46.5% 50.4% 42.7% 35.2% erminal rate 15/33 (46%) 12/30 (40%) 13/33 (39%) 8/22 (36%) irst incidence (days) 631 617 666 523 | Mammary Gland: Fibroadenoma or Adenoma | | | Ferminal rate 15/33 (46%) 12/30 (40%) 13/33 (39%) 8/22 (36%) irst incidence (days) 631 617 666 523 oly-3 test P=0.119N P=0.438 P=0.441N P=0.200N Immary Gland: Carcinoma Image: Car | | (a) 14/50 (28%) | | irst incidence (days) oly-3 test P=0.119N P=0.438 P=0.441N P=0.200N Mammary Gland: Carcinoma | Adjusted rate 46.5% 50.4% 42.7% | 35.2% | | P=0.119N | Terminal rate 15/33 (46%) 12/30 (40%) 13/33 (39) | (a) 8/22 (36%) | | Mammary Gland: Carcinoma S/50 (6%) S/50 (10%) 4/50 (8%) 0/50 (0%) | First incidence (days) 631 617 666 | 523 | | Averall rate 3/50 (6%) 5/50 (10%) 4/50 (8%) 0/50 (0%) Adjusted rate 7.1% 11.2% 9.1% 0.0% Averall rate 3/33 (9%) 2/30 (7%) 4/33 (12%) 0/22 (0%) Averall rate 3/33 (9%) 2/30 (7%) 4/33 (12%) 0/22 (0%) Averall rate 3/31 (T) 374 731 (T) — Ammary Gland: Adenoma or Carcinoma Averall rate 3/50 (6%) 6/50 (12%) 4/50 (8%) 0/50 (0%) Adjusted rate 3/33 (9%) 2/30 (7%) 4/33 (12%) 0/22 (0%) Averall rate 3/33 (9%) 2/30 (7%) 4/33 (12%) 0/22 (0%) Averall rate 3/33 (9%) 2/30 (7%) 4/33 (12%) 0/22 (0%) Averall rate 3/33 (9%) 2/30 (7%) 4/33 (12%) 0/22 (0%) Averall rate 3/33 (9%) 2/30 (7%) 4/33 (12%) 0/22 (0%) Averall rate 3/33 (9%) 2/30 (7%) 2/30 (7%) 2/30 (42%) 14/50 (28%) Averall rate 22/50 (44%) 25/50 (50%) 21/50 (42%) 14/50 (28%) Adjusted rate 22/50 (44%) 25/50 (50%) 21/50 (42%) 14/50 (28%) Averall rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) Averall rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) Averall rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) Averall rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) Averall rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) Averall rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) Averall rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) Averall rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) Averall rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) Averall rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) Averall rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) Averall rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) Averall rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) Averall rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) Averall rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 14/50 (42%) Averall | oly-3 test P=0.119N P=0.438 P=0.441N | P=0.200N | | djusted rate 7.1% 11.2% 9.1% 0.0% erminal rate 3/33 (9%) 2/30 (7%) 4/33 (12%) 0/22 (0%) irst incidence (days) 731 (T) 374 731 (T) — oly-3 test P=0.110N P=0.385 P=0.520 P=0.140N Mammary Gland: Adenoma or Carcinoma verall rate 3/50 (6%) 6/50 (12%) 4/50 (8%) 0/50 (0%) djusted rate 7.1% 13.4% 9.1% 0.0% erminal rate 3/33 (9%) 2/30 (7%) 4/33 (12%) 0/22 (0%) irst incidence (days) 731 (T) 374 731 (T) — oly-3 test P=0.093N P=0.270 P=0.520 P=0.140N Mammary Gland: Fibroadenoma, Adenoma, or Carcinoma verall rate 22/50 (44%) 25/50 (50%) 21/50 (42%) 14/50 (28%) djusted rate 51.2% 53.6% 47.1% 35.2% erminal rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) irst incidence (days) 631 374 666 523 | Aammary Gland: Carcinoma | | | ### State | Overall rate 3/50 (6%) 5/50 (10%) 4/50 (8%) | 0/50 (0%) | | Table Tabl | Adjusted rate 7.1% 11.2% 9.1% | 0.0% | | Table Tabl | Ferminal rate 3/33 (9%) 2/30 (7%) 4/33 (12% | 0/22 (0%) | | Mammary Gland: Adenoma or Carcinoma overall rate 3/50 (6%) 6/50 (12%) 4/50 (8%) 0/50 (0%) odjusted rate 7.1% 13.4% 9.1% 0.0% eerminal rate 3/33 (9%) 2/30 (7%) 4/33 (12%) 0/22 (0%) irst incidence (days) 731 (T) 374 731 (T) — oly-3 test P=0.093N P=0.270 P=0.520 P=0.140N Mammary Gland: Fibroadenoma, Adenoma, or Carcinoma 22/50 (44%) 25/50 (50%) 21/50 (42%) 14/50 (28%) dijusted rate 51.2% 53.6% 47.1% 35.2% erminal rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) irst incidence (days) 631 374 666 523 | | | | Agental rate 3/50 (6%) 6/50 (12%) 4/50 (8%) 0/50 (0%) 13.4% 9.1% 0.0% 13.4% 9.1% 0.0% 13.4% 9.1% 0.0% 13.4% 9.1% 0.0% 13.4% 9.1% 0.0% 13.4% 9.1% 0.0% 13.4% 9.1% 0.0% 13.4% 9.1% 0.0% 13.4% 9.1% 0.0% 13.4% 9.1% 0.0% 13.4% 9.1% 0.0% 13.4% 9.1% 0.0% 13.4% 9.1% 0.0% 13.4% 13.4% 9.1% 0.0% 13.4% 13.4% 9.1% 0.0% 13.4% | | P=0.140N | | Adjusted rate 7.1% 13.4% 9.1% 0.0% erminal rate 3/33 (9%) 2/30 (7%) 4/33 (12%) 0/22 (0%) irst incidence (days) 731 (T) 374 731 (T) — oly-3 test P=0.093N P=0.270 P=0.520 P=0.140N Ammary Gland: Fibroadenoma, Adenoma, or Carcinoma everall rate 22/50 (44%) 25/50 (50%) 21/50 (42%) 14/50 (28%) erminal rate 51.2% 53.6% 47.1% 35.2% erminal rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) irst incidence (days) 631 374 666 523 | Nammary Gland: Adenoma or Carcinoma | | | Adjusted rate 7.1% 13.4% 9.1% 0.0% erminal rate 3/33 (9%) 2/30 (7%) 4/33 (12%) 0/22 (0%) irst incidence (days) 731 (T) 374 731 (T) — oly-3 test P=0.093N P=0.270 P=0.520 P=0.140N Mammary Gland: Fibroadenoma, Adenoma, or Carcinoma everall rate 22/50 (44%) 25/50 (50%) 21/50 (42%) 14/50 (28%) djusted rate 51.2% 53.6% 47.1% 35.2% erminal rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) irst incidence (days) 631 374 666 523 | Overall rate 3/50 (6%) 6/50 (12%) 4/50 (8%) | 0/50 (0%) | | erminal rate 3/33 (9%) 2/30 (7%) 4/33 (12%) 0/22 (0%) irst incidence (days) 731 (T) 374 731 (T) — oly-3 test P=0.093N P=0.270 P=0.520 P=0.140N Ammary Gland: Fibroadenoma, Adenoma, or Carcinoma overall rate 22/50 (44%) 25/50 (50%) 21/50 (42%) 14/50 (28%) 25/50 (50%) 21/50 (42%) 14/50 (28%)
25/50 (50%) 21/50 (42%) 15/50 (42%) 1 | | ` / | | irst incidence (days) 731 (T) 374 731 (T) — oly-3 test P=0.093N P=0.270 P=0.520 P=0.140N Mammary Gland: Fibroadenoma, Adenoma, or Carcinoma overall rate 22/50 (44%) 25/50 (50%) 21/50 (42%) 14/50 (28%) olyieted rate 51.2% 53.6% 47.1% 35.2% erminal rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) irst incidence (days) 631 374 666 523 | · · | 0/22 (0%) | | P=0.093N P=0.270 P=0.520 P=0.140N Ammary Gland: Fibroadenoma, Adenoma, or Carcinoma Verall rate 22/50 (44%) 25/50 (50%) 21/50 (42%) 14/50 (28%) djusted rate 51.2% 53.6% 47.1% 35.2% erminal rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) irst incidence (days) 631 374 666 523 | | _ ` ′ | | overall rate 22/50 (44%) 25/50 (50%) 21/50 (42%) 14/50 (28%) odjusted rate 51.2% 53.6% 47.1% 35.2% eerminal rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) irst incidence (days) 631 374 666 523 | | P=0.140N | | overall rate 22/50 (44%) 25/50 (50%) 21/50 (42%) 14/50 (28%) odjusted rate 51.2% 53.6% 47.1% 35.2% eerminal rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) irst incidence (days) 631 374 666 523 | Mammary Gland: Fibroadenoma, Adenoma, or Carcinoma | | | djusted rate 51.2% 53.6% 47.1% 35.2% erminal rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) irst incidence (days) 631 374 666 523 | · | %) 14/50 (28%) | | erminal rate 17/33 (52%) 12/30 (40%) 15/33 (46%) 8/22 (36%) irst incidence (days) 631 374 666 523 | | / | | irst incidence (days) 631 374 666 523 | · · | | | | | · · · · · · | | 1 - V. V. J. I - V. V. J. I - V. S. J. I - V. S. J. J. I - V. S. J. | From the field α and α are the field α are the field α and α are the field α and α are the field α are the field α and α are the field α and α are the field α are the field α and α are the field α and α are the field α are the field α and are the field α are the field α and α are the field α are the field α and α are the field α are the field α and α are the field α and α are the field α are the field α and α are the field α and α are the field α are the field α and α are the field α and α are the field α and α are the field α are the field α and α are the field α are the field α and α are the field α are the field α and α are the field α and α are the field α are the field α are the field α and α are the field α are the field α and α are the field α and α are the field α are the field α and α are the field α and α are the field α are the field α are the field α and α are the field α are the field α and α are the field α ar | | TABLE B3 Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |-------------------------------------|------------------------|-------------|-------------|-------------| | Pituitary Gland (Pars Distalis): Ad | enoma | | | | | Overall rate | 37/50 (74%) | 34/50 (68%) | 39/50 (78%) | 28/50 (56%) | | Adjusted rate | 79.1% | 73.2% | 82.5% | 66.3% | | Ferminal rate | 26/33 (79%) | 22/30 (73%) | 27/33 (82%) | 16/22 (73%) | | First incidence (days) | 455 | 374 | 493 | 529 | | Poly-3 test | P=0.138N | P=0.330N | P=0.438 | P=0.114N | | Thyroid Gland (C-cell): Adenoma | | | | | | Overall rate | 0/50 (0%) | 5/50 (10%) | 1/50 (2%) | 4/50 (8%) | | Adjusted rate | 0.0% | 11.2% | 2.3% | 10.4% | | Ferminal rate | 0/33 (0%) | 3/30 (10%) | 1/33 (3%) | 2/22 (9%) | | First incidence (days) | | 506 | 731 (T) | 563 | | oly-3 test | P=0.134 | P=0.035 | P=0.507 | P=0.049 | | Thyroid Gland (C-cell): Adenoma | or Carcinoma | | | | | Overall rate | 1/50 (2%) | 6/50 (12%) | 2/50 (4%) | 4/50 (8%) | | Adjusted rate | 2.4% | 13.4% | 4.6% | 10.4% | | Terminal rate | 0/33 (0%) | 3/30 (10%) | 1/33 (3%) | 2/22 (9%) | | First incidence (days) | 716 | 506 | 715 | 563 | | oly-3 test | P=0.282 | P=0.064 | P=0.512 | P=0.150 | | Jterus: Stromal Polyp | | | | | | Overall rate | 9/50 (18%) | 6/50 (12%) | 8/50 (16%) | 7/50 (14%) | | djusted rate | 21.1% | 13.6% | 17.7% | 18.1% | | erminal rate | 7/33 (21%) | 3/30 (10%) | 5/33 (15%) | 4/22 (18%) | | irst incidence (days) | 687 | 670 | 481 | 589 | | oly-3 test | P=0.501N | P=0.261N | P=0.447N | P=0.475N | | • | | 1-0.2011 | 1-0.44/10 | 1-0.4751 | | Jterus: Stromal Polyp or Stromal | | | | | | Overall rate | 9/50 (18%) | 8/50 (16%) | 8/50 (16%) | 7/50 (14%) | | Adjusted rate | 21.1% | 17.9% | 17.7% | 18.1% | | erminal rate | 7/33 (21%) | 4/30 (13%) | 5/33 (15%) | 4/22 (18%) | | irst incidence (days) | 687 | 561 | 481 | 589 | | oly-3 test | P=0.430N | P=0.458N | P=0.447N | P=0.475N | | All Organs: Mononuclear Cell Leu | | | | | | Overall rate | 10/50 (20%) | 18/50 (36%) | 22/50 (44%) | 22/50 (44%) | | Adjusted rate | 23.0% | 38.9% | 47.1% | 49.7% | | erminal rate | 6/33 (18%) | 8/30 (27%) | 12/33 (36%) | 5/22 (23%) | | First incidence (days) | 477 | 542 | 481 | 516 | | oly-3 test | P=0.008 | P=0.078 | P=0.013 | P=0.007 | | All Organs: Benign Neoplasms | | | | | | Overall rate | 43/50 (86%) | 42/50 (84%) | 45/50 (90%) | 36/50 (72%) | | Adjusted rate | 91.6% | 88.3% | 93.7% | 82.0% | | Cerminal rate | 31/33 (94%) | 26/30 (87%) | 32/33 (97%) | 20/22 (91%) | | First incidence (days) | 455 | 374 | 481 | 523 | | Poly-3 test | P=0.103N | P=0.418N | P=0.498 | P=0.114N | TABLE B3 Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |---------------------------------|-----------------|-------------|-------------|-------------| | All Organs: Malignant Neoplasm | ns | | | | | Overall rate | 17/50 (34%) | 27/50 (54%) | 28/50 (56%) | 27/50 (54%) | | Adjusted rate | 37.6% | 55.4% | 57.5% | 59.8% | | Terminal rate | 9/33 (27%) | 11/30 (37%) | 14/33 (42%) | 8/22 (36%) | | First incidence (days) | 436 | 374 | 374 | 516 | | Poly-3 test | P=0.038 | P=0.062 | P=0.040 | P=0.025 | | All Organs: Benign or Malignant | t Neoplasms | | | | | Overall rate | 46/50 (92%) | 46/50 (92%) | 49/50 (98%) | 47/50 (94%) | | Adjusted rate | 95.0% | 92.0% | 98.0% | 96.8% | | Cerminal rate | 31/33 (94%) | 26/30 (87%) | 32/33 (97%) | 21/22 (96%) | | irst incidence (days) | 436 | 374 | 374 | 516 | | oly-3 test | P=0.276 | P=0.423N | P=0.391 | P=0.528 | ⁽T) Terminal sacrifice Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, liver, pituitary gland, and thyroid gland; for other tissues, denominator is number of animals necropsied. Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality Observed incidence at terminal kill Beneath the chamber control incidence is the P value associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the chamber controls and that exposed group. The Poly-3 test accounts for the differential mortality in animals that do not reach terminal sacrifice. A negative trend or a lower incidence in an exposed group is indicated by N. Not applicable; no neoplasms in animal group Value of statistic cannot be computed. TABLE B4 Historical Incidence of Mononuclear Cell Leukemia in Control Female F344/N Rats^a | Study | Incidence in Controls | | |--|-----------------------|--| | Historical Incidence: Inhalation Studies | | | | Decalin | 11/50 | | | Divinylbenzene | 10/50 | | | Indium phosphide | 14/50 | | | Methyl isobutyl ketone | 14/50 | | | Naphthalene | 16/49 | | | Propylene glycol mono-t-butyl ether | 24/50 | | | Stoddard solvent IIC | 26/50 | | | Vanadium pentoxide | 21/50 | | | Overall Historical Incidence: Inhalation Studies | | | | Total (%) | 136/399 (34.1%) | | | Mean \pm standard deviation | $34.1\%
\pm 11.9\%$ | | | Range | 20%-52% | | | Overall Historical Incidence: All Routes | | | | Total (%) | 383/1,459 (29.3%) | | | Mean ± standard deviation | $26.7\% \pm 10.5\%$ | | | Range | 12%-52% | | | e e e e e e e e e e e e e e e e e e e | | | ^a Data as of January 28, 2005; includes data for lymphocytic, monocytic, monuclear cell, or undifferentiated leukemia. TABLE B5 Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP^a | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |--|-----------------|--------------------|-----------|-----------| | Disposition Summary | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Early deaths | | | | 50 | | Accidental death | | 1 | | | | Moribund | 10 | 16 | 14 | 26 | | Natural deaths | 7 | 3 | 3 | 2 | | Survivors | | | | | | Terminal sacrifice | 33 | 30 | 33 | 22 | | Animals examined microscopically | 50 | 50 | 50 | 50 | | Alimentary System | | | | | | Intestine large, colon | (50) | (49) | (49) | (50) | | Epithelium, metaplasia, focal, squamous | (30) | 1 (2%) | (47) | (30) | | Liver | (50) | (50) | (50) | (50) | | Clear cell focus | 5 (10%) | 7 (14%) | 6 (12%) | (30) | | Hepatodiaphragmatic nodule | 5 (10%) | 7 (14%)
7 (14%) | 6 (12%) | 9 (18%) | | Necrosis | 3 (10/0) | / (17/0) | 1 (2%) | 7 (10/0) | | Vacuolization cytoplasmic | 4 (8%) | 3 (6%) | 1 (270) | 3 (6%) | | Bile duct, hyperplasia | 7 (0/0) | 3 (0/0) | 1 (2%) | 3 (070) | | Hepatocyte, regeneration | | 1 (2%) | 1 (2%) | | | Periportal, inflammation, chronic | 3 (6%) | 2 (4%) | 1 (2%) | 2 (4%) | | Portal, bile stasis | 1 (2%) | 3 (6%) | 2 (4%) | 1 (2%) | | Serosa, fibrosis | 1 (2/0) | 3 (0/0) | 1 (2%) | 1 (2/0) | | Mesentery | (15) | (20) | (17) | (6) | | Necrosis | 14 (93%) | 20 (100%) | 16 (94%) | 6 (100%) | | Oral mucosa | (1) | 20 (100/0) | 10 (24/0) | 0 (10070) | | Pharyngeal, ulcer | 1 (100%) | | | | | Pancreas | (50) | (49) | (50) | (50) | | Acinus, atrophy | 3 (6%) | 5 (10%) | 2 (4%) | 4 (8%) | | Salivary glands | (50) | (50) | (50) | (50) | | Inflammation, chronic | (50) | 1 (2%) | (50) | (30) | | Stomach, forestomach | (50) | (50) | (49) | (49) | | Hyperplasia, focal, squamous | (50) | 1 (2%) | 1 (2%) | (77) | | Ulcer | 1 (2%) | 1 (2%) | 1 (2%) | 1 (2%) | | Stomach, glandular | (50) | (50) | (49) | (49) | | Erosion | (50) | (30) | 1 (2%) | 1 (2%) | | Ulcer | | | 1 (2%) | 1 (2/0) | | Epithelium, hyperplasia | 1 (2%) | | 1 (2/0) | | | Fongue | (1) | (1) | (3) | (3) | | Epithelium, hyperplasia | 1 (100%) | (-) | 3 (100%) | 2 (67%) | | Footh | 2 (10070) | | (1) | 2 (0770) | | Peridontal tissue, inflammation | | | 1 (100%) | | | Pulp, inflammation, suppurative | | | 1 (100%) | | | i orp, inflammation, suppurative | | | 1 (10070) | | | Cardiovascular System | | | | | | Heart | (50) | (50) | (50) | (50) | | Cardiomyopathy | | | | 3 (6%) | | Atrium, thrombosis | | 1 (2%) | 2 (4%) | | | Pericardium, infiltration cellular, lymphoid | | | | 1 (2%) | ^a Number of animals examined microscopically at the site and the number of animals with lesion TABLE B5 Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |---|---|--|--|--| | Endocrine System | | | | | | Adrenal cortex Accessory adrenal cortical nodule | (50) | (50) | (50)
1 (2%) | (50) | | Hemorrhage | | 1 (2%) | | | | Hyperplasia | | | | 1 (2%) | | Necrosis | | 1 (2%) | - 44.49.43 | | | Vacuolization cytoplasmic | 14 (28%) | 5 (10%) | 7 (14%) | 12 (24%) | | Adrenal medulla | (50) | (50) | (50) | (50) | | Hyperplasia | 1 (2%) | 1 (2%) | 5 (10%) | 2 (4%) | | Parathyroid gland | (49) | (49) | (47) | (49) | | Hyperplasia | (==) | () | 1 (2%) | (==) | | Pituitary gland | (50) | (50) | (50) | (50) | | Cyst | 6 (12%) | 6 (12%) | 1 (2%) | 5 (10%) | | Pars distalis, angiectasis | 1 (2%) | | | | | Pars distalis, hematocyst | | | | 1 (2%) | | Pars distalis, hyperplasia | 4 (8%) | 8 (16%) | 4 (8%) | 7 (14%) | | Γhyroid gland | (50) | (50) | (50) | (50) | | Ultimobranchial cyst | 1 (2%) | | | | | | 5 (10%) | 8 (16%) | 6 (12%) | 1 (2%) | | C-cell, hyperplasia | 3 (1070) | | * (-=/*) | | | Follicular cell, hyperplasia | 3 (1070) | 1 (2%) | . (-1-/-) | 1 (2%) | | Follicular cell, hyperplasia General Body System None | 3 (1070) | | | | | Follicular cell, hyperplasia General Body System None Genital System | | 1 (2%) | | 1 (2%) | | Follicular cell, hyperplasia General Body System None Genital System Clitoral gland | (50) | | (50) | | | Follicular cell, hyperplasia General Body System None Genital System Clitoral gland Cyst | (50)
3 (6%) | 1 (2%) | (50)
1 (2%) | 1 (2%) | | Follicular cell, hyperplasia General Body System None Genital System Clitoral gland Cyst Hyperplasia | (50)
3 (6%)
1 (2%) | (50) | (50)
1 (2%)
2 (4%) | 1 (2%) | | General Body System None Genital System Clitoral gland Cyst Hyperplasia Inflammation, chronic | (50)
3 (6%)
1 (2%)
2 (4%) | (50)
3 (6%)
1 (2%) | (50)
1 (2%)
2 (4%)
1 (2%) | (50) | | General Body System None Genital System Clitoral gland Cyst Hyperplasia Inflammation, chronic Ovary | (50)
3 (6%)
1 (2%)
2 (4%)
(50) | (50)
3 (6%)
1 (2%)
(50) | (50)
1 (2%)
2 (4%)
1 (2%)
(50) | (50)
2 (4%)
(50) | | General Body System None Genital System Clitoral gland Cyst Hyperplasia Inflammation, chronic Ovary Cyst | (50)
3 (6%)
1 (2%)
2 (4%)
(50)
5 (10%) | (50)
3 (6%)
1 (2%) | (50)
1 (2%)
2 (4%)
1 (2%) | (50)
2 (4%) | | General Body System None Genital System Clitoral gland Cyst Hyperplasia Inflammation, chronic Ovary Cyst Bilateral, cyst | (50)
3 (6%)
1 (2%)
2 (4%)
(50)
5 (10%)
1 (2%) | (50)
3 (6%)
1 (2%)
(50)
6 (12%) | (50)
1 (2%)
2 (4%)
1 (2%)
(50)
11 (22%) | (50)
2 (4%)
(50)
4 (8%) | | General Body System None Genital System Clitoral gland Cyst Hyperplasia Inflammation, chronic Dvary Cyst Bilateral, cyst Jterus | (50)
3 (6%)
1 (2%)
2 (4%)
(50)
5 (10%) | (50)
3 (6%)
1 (2%)
(50) | (50)
1 (2%)
2 (4%)
1 (2%)
(50)
11 (22%) | (50)
2 (4%)
(50) | | General Body System None Genital System Clitoral gland Cyst Hyperplasia Inflammation, chronic Ovary Cyst Bilateral, cyst Jterus Hemorrhage | (50)
3 (6%)
1 (2%)
2 (4%)
(50)
5 (10%)
1 (2%) | (50) 3 (6%) 1 (2%) (50) 6 (12%) (50) | (50)
1 (2%)
2 (4%)
1 (2%)
(50)
11 (22%) | (50)
2 (4%)
(50)
4 (8%) | | General Body System None Genital System Clitoral gland Cyst Hyperplasia Inflammation, chronic Ovary Cyst Bilateral, cyst Jterus Hemorrhage Necrosis | (50)
3 (6%)
1 (2%)
2 (4%)
(50)
5 (10%)
1 (2%)
(50) | (50) 3 (6%) 1 (2%) (50) 6 (12%) (50) 1 (2%) | (50) 1 (2%) 2 (4%) 1 (2%) (50) 11 (22%) (50) 1 (2%) | (50)
2 (4%)
(50)
4 (8%)
(50) | | General Body System None Genital System Clitoral gland Cyst Hyperplasia Inflammation, chronic Ovary Cyst Bilateral, cyst Jterus Hemorrhage Necrosis Endometrium, hyperplasia | (50)
3 (6%)
1 (2%)
2 (4%)
(50)
5 (10%)
1 (2%) | (50) 3 (6%) 1 (2%) (50) 6 (12%) (50) | (50) 1 (2%) 2 (4%) 1 (2%) (50) 11 (22%) (50) 1 (2%) | (50)
2 (4%)
(50)
4 (8%) | | General Body System None Genital System Clitoral gland Cyst Hyperplasia Inflammation, chronic Ovary Cyst Bilateral, cyst Jterus Hemorrhage Necrosis Endometrium, hyperplasia Myometrium, hyperplasia | (50)
3 (6%)
1 (2%)
2 (4%)
(50)
5 (10%)
1 (2%)
(50) | (50) 3 (6%) 1 (2%) (50) 6 (12%) (50) 1 (2%) 1 (2%) | (50) 1 (2%) 2 (4%) 1 (2%) (50) 11 (22%) (50) 1 (2%) | (50)
2 (4%)
(50)
4 (8%)
(50)
2 (4%) | | General Body System None Genital System Clitoral gland Cyst Hyperplasia Inflammation, chronic Ovary Cyst Bilateral, cyst Jterus Hemorrhage Necrosis Endometrium, hyperplasia | (50)
3 (6%)
1 (2%)
2 (4%)
(50)
5 (10%)
1 (2%)
(50) | (50) 3 (6%) 1 (2%) (50) 6 (12%) (50) 1 (2%) | (50) 1 (2%) 2 (4%) 1 (2%) (50) 11 (22%) (50) 1 (2%) | (50)
2 (4%)
(50)
4 (8%)
(50) | TABLE B5 Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |--|------------------------|--|----------------------------------|----------------------------------| | Hematopoietic System | | | | | | Bone marrow | (50) | (50) | (50) | (50) | | Myelofibrosis | (30) | (30) | 1 (2%) | (30) | | Lymph node | (6) | (10) | (9) | (8) | | | (6) | 3 (30%) | (9) | | | Deep cervical, infiltration cellular, histiocyte | | ` / | 1 (110/) | 1 (13%) | | Pancreatic, pigmentation | (8) | 1 (10%) | 1 (11%) | (14) | | Lymph node, bronchial | (8) | (9) | (5) | (14) | | Infiltration cellular, histiocyte | | | | 1 (7%) | | Lymph node, mesenteric | (50) | (50) | (50) | (50) | | Infiltration cellular, histiocyte | 2 (4%) | 1 (2%) | 2 (4%) | | | Pigmentation | | | | 1 (2%) | | Lymph node, mediastinal | (32) | (37) | (44) | (34) | | Fibrosis | | | 1 (2%) | | | Hyperplasia, lymphoid | 1 (3%) | | 1 (2%) | | | Infiltration cellular, histiocyte | 2 (6%) | 1 (3%) | (-, *) | | | Inflammation, suppurative | 1 (3%) | 1 (3/0) | | | | Spleen | (50) | (50) | (50) | (50) | | | * * | | | (50) | | Accessory spleen | 2 (4%) |
1 (2%) | 1 (2%) | 1 (20/) | | Fibrosis | 3 (6%) | 1 (2%) | 3 (6%) | 1 (2%) | | Hematopoietic cell proliferation | | 1 (2%) | | | | Hemorrhage | 2 (4%) | 1 (2%) | 1 (2%) | 2 (4%) | | Hyperplasia, focal, lymphoid | | 2 (4%) | | | | Inflammation, chronic active | | | 1 (2%) | | | Necrosis | | | | 1 (2%) | | Γhymus | (45) | (41) | (46) | (39) | | Cyst | | , | | 1 (3%) | | Integumentary System Mammary gland Galactocele Hyperplasia Inflammation, chronic Skin Cyst epithelial inclusion Hyperkeratosis Inflammation, granulomatous Ulcer | (50)
1 (2%)
(50) | (50)
2 (4%)
(50)
2 (4%)
1 (2%) | (50) 1 (2%) 1 (2%) (50) 1 (2%) | (50)
(50)
1 (2%)
1 (2%) | | Musculoskeletal System Bone | (50) | (50) | (50) | (50) | | Joint, fracture | | 1 (2%) | | | | Tibia, fracture | | | 1 (2%) | | | Skeletal muscle | (2) | (3) | (7) | (5) | | Inflammation, chronic | | 1 (33%) | | | | Necrosis | 1 (50%) | 1 (33%) | | | | Nervous System | | | | | | Brain | (50) | (50) | (50) | (50) | | | | | | 7 (14%) | | Compression | 9 (18%) | 10 (20%) | 11 (22%) | / (1470) | | Congestion | 2 (49/) | 1 (2%) | ((100/) | 2 ((0/) | | Hemorrhage
Infarct | 2 (4%) | 2 (4%) | 6 (12%)
1 (2%) | 3 (6%) | | | | | | | TABLE B5 Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |--|------------------------|-----------|-----------|-----------| | Respiratory System | | | | | | Larynx | (50) | (50) | (49) | (50) | | Foreign body | (23) | 1 (2%) | 3 (6%) | (5.5) | | Inflammation, suppurative | | 2 (4%) | 1 (2%) | | | Epiglottis, metaplasia, squamous | 1 (2%) | _ (., ,) | - (=/*/) | | | Lung | (50) | (50) | (50) | (50) | | Atrophy | 1 (2%) | () | () | () | | Cyst | | | 1 (2%) | | | Foreign body | | | 1 (2%) | | | Hemorrhage | 1 (2%) | 1 (2%) | 1 (2%) | 1 (2%) | | Infiltration cellular, histiocyte | 1 (2%) | | (1 1) | | | Inflammation, chronic | - (=, *) | | 1 (2%) | | | Inflammation, chronic, diffuse | 1 (2%) | | (1 1) | 1 (2%) | | Inflammation, chronic, focal | 27 (54%) | 22 (44%) | 26 (52%) | 33 (66%) | | Alveolar epithelium, hyperplasia | 4 (8%) | 2 (4%) | 3 (6%) | 1 (2%) | | Alveolar epithelium, hypertrophy | 1 (2%) | 1 (2%) | 2 (474) | 1 (2%) | | Alveolus, infiltration cellular, focal, histiocyte | 8 (16%) | 3 (6%) | 6 (12%) | 5 (10%) | | Interstitium, fibrosis | (-0,0) | | * (/*) | 1 (2%) | | Mediastinum, necrosis, fatty | 1 (2%) | | | 1 (270) | | Vose | (50) | (50) | (49) | (49) | | Foreign body | 1 (2%) | 5 (10%) | 1 (2%) | (.) | | Inflammation, suppurative | 5 (10%) | 12 (24%) | 8 (16%) | 7 (14%) | | Ulcer | 1 (2%) | 12 (21/0) | 0 (10/0) | , (11,70) | | Glands, dilatation | 1 (270) | 17 (34%) | 38 (78%) | 44 (90%) | | Goblet cell, hyperplasia | 1 (2%) | 3 (6%) | 1 (2%) | 4 (8%) | | Nasolacrimal duct, inflammation, suppurative | 3 (6%) | 1 (2%) | 3 (6%) | 1 (2%) | | Nasopharyngeal duct, inflammation, suppurativ | | 1 (270) | 1 (2%) | 1 (270) | | Olfactory epithelium, degeneration | . • | 50 (100%) | 49 (100%) | 48 (98%) | | Olfactory epithelium, degeneration, hyaline | 10 (20%) | 14 (28%) | 15 (31%) | 4 (8%) | | Olfactory epithelium, hyperplasia, basal cell | 10 (2070) | 25 (50%) | 42 (86%) | 45 (92%) | | Olfactory epithelium, regeneration, focal | 1 (2%) | 23 (3070) | 12 (6676) | 13 (3270) | | Respiratory epithelium, degeneration, hyaline | 5 (10%) | 3 (6%) | 4 (8%) | | | Respiratory epithelium, hyperplasia | 1 (2%) | 3 (070) | 1 (2%) | | | Respiratory epithelium, metaplasia, squamous | 1 (270) | | 1 (270) | 1 (2%) | | Pleura | (50) | (50) | (50) | (49) | | Fibrosis | 1 (2%) | (30) | (30) | (42) | | Infiltration cellular, lymphoid | 1 (270) | | | 1 (2%) | | Frachea | (50) | (50) | (50) | (50) | | Glands, degeneration, cystic | (30) | (30) | 1 (2%) | 1 (2%) | | Gianas, aegeneration, cystic | | | 1 (270) | 1 (270) | | Special Senses System | (50) | (40) | (40) | (40) | | Eye | (50) | (48) | (49) | (49) | | Atrophy | 1 (00/) | | 1 (2%) | | | Inflammation, chronic | 1 (2%) | | | | | Anterior chamber, hemorrhage | | | 1 (2%) | | | Ciliary body, inflammation | | 1 (2%) | | | | Cornea, inflammation | 1 (2%) | | | | | Lens, cataract | 1 (2%) | 3 (6%) | 4 (8%) | 1 (2%) | | Harderian gland | (50) | (50) | (50) | (50) | | Inflammation, suppurative | 1 (2%) | | | | TABLE B5 Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |---|------------------------|----------|----------|----------| | Urinary System | | | | | | Kidney | (50) | (50) | (49) | (50) | | Cyst | | | 1 (2%) | | | Nephropathy, chronic | 19 (38%) | 21 (42%) | 19 (39%) | 10 (20%) | | Bilateral, cortex, renal tubule, degeneration | | | | 1 (2%) | | Cortex, infarct | | | | 2 (4%) | | Cortex, renal tubule, accumulation, hyaline dr | oplet | | | 1 (2%) | | Cortex, renal tubule, hyperplasia | 1 (2%) | 1 (2%) | | | | Medulla, renal tubule, degeneration | | | | 1 (2%) | | Pelvis, transitional epithelium, hyperplasia | 1 (2%) | | | 1 (2%) | | Pelvis, transitional epithelium, mineralization | 1 (2%) | | | | | Renal tubule, dilatation | 1 (2%) | | | | | Urinary bladder | (50) | (50) | (49) | (49) | | Transitional epithelium, hyperplasia | 1 (2%) | • / | | . / | ## APPENDIX C SUMMARY OF LESIONS IN MALE MICE IN THE 2-YEAR INHALATION STUDY OF DIVINYLBENZENE-HP | TABLE C1 | Summary of the Incidence of Neoplasms in Male Mice | | |----------|--|------| | | in the 2-Year Inhalation Study of Divinylbenzene-HP | C-2 | | TABLE C2 | Individual Animal Tumor Pathology of Male Mice | | | | in the 2-Year Inhalation Study of Divinylbenzene-HP | C-6 | | TABLE C3 | Statistical Analysis of Primary Neoplasms in Male Mice | | | | in the 2-Year Inhalation Study of Divinylbenzene-HP | C-28 | | TABLE C4 | Historical Incidence of Alveolar/bronchiolar Neoplasms | | | | in Control Male B6C3F ₁ Mice | C-31 | | TABLE C5 | Summary of the Incidence of Nonneoplastic Lesions in Male Mice | | | | in the 2-Year Inhalation Study of Divinylbenzene-HP | C-32 | TABLE C1 Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP^a | | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |--|------------------------|----------|----------------|----------------| | Disposition Summary | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Early deaths | | | | | | Moribund | 7 | 6 | 5 | 4 | | Natural deaths | 2 | 6 | 3 | 3 | | Survivors | | | | | | Terminal sacrifice | 41 | 38 | 42 | 43 | | Animals examined microscopically | 50 | 50 | 50 | 50 | | Alimentary System | | | | | | Gallbladder | (42) | (34) | (42) | (45) | | Adenoma | 1 (2%) | ζ- / | ` ' | (-) | | Intestine large, rectum | (48) | (45) | (46) | (47) | | Leiomyosarcoma | | 1 (2%) | ` ' | ` ' | | Intestine large, cecum | (48) | (46) | (47) | (48) | | Carcinoma | | 1 (2%) | | | | Hepatocholangiocarcinoma, metastatic, liver | | 1 (2%) | | | | Leiomyoma | | | | 1 (2%) | | Polyp adenomatous | 1 (2%) | (45) | (45) | (47) | | Intestine small, duodenum | (48) | (45) | (47) | (47) | | Carcinoma | (40) | 1 (2%) | (47) | (47) | | Intestine small, jejunum Carcinoma | (48)
3 (6%) | (45) | (47) | (47)
4 (9%) | | Intestine small, ileum | (48) | (45) | (47) | (47) | | Carcinoma | (40) | (73) | (77) | 1 (2%) | | Liver | (50) | (50) | (50) | (50) | | Carcinoma, metastatic, pancreas | (30) | (30) | 1 (2%) | (30) | | Cholangiocarcinoma | | 1 (2%) | 1 (270) | | | Hemangiosarcoma | 3 (6%) | 1 (2%) | | | | Hepatoblastoma | | ` / | 2 (4%) | | | Hepatocellular carcinoma | 12 (24%) | 9 (18%) | 7 (14%) | 7 (14%) | | Hepatocellular carcinoma, multiple | 1 (2%) | 2 (4%) | 2 (4%) | 3 (6%) | | Hepatocellular adenoma | 10 (20%) | 12 (24%) | 10 (20%) | 11 (22%) | | Hepatocellular adenoma, multiple | 12 (24%) | 5 (10%) | 2 (4%) | 1 (2%) | | Hepatocholangiocarcinoma | 1 (2%) | 1 (2%) | | | | Histiocytic sarcoma | (4) | | | 1 (2%) | | Oral mucosa | (1) | | | | | Pharyngeal, squamous cell carcinoma | 1 (100%) | (49) | (50) | (50) | | Pancreas | (49) | (48) | (50) | (50) | | Carcinoma
Stamach, forestomach | (49) | (50) | 1 (2%)
(49) | (50) | | Stomach, forestomach Squamous cell carcinoma | (47) | (30) | (47) | (50)
1 (2%) | | Squamous cell papilloma | 1 (2%) | 1 (2%) | 1 (2%) | 1 (2%) | | Stomach, glandular | (48) | (48) | (47) | (49) | | Carcinoma | () | () | 1 (2%) | () | | Cardiovascular System | | | | | | Heart | (50) | (49) | (50) | (50) | | Alveolar/bronchiolar carcinoma, metastatic, | (50) | (47) | (30) | (30) | | lung | | | | 1 (2%) | | Cholangiocarcinoma, metastatic, liver | | 1 (2%) | | 1 (2/0) | | Hemangiosarcoma | 2 (4%) | 1 (2/0) | | | | Hepatocholangiocarcinoma, metastatic, liver | = (' ' ' ') | 1 (2%) | | | | Histiocytic sarcoma | 1 (2%) | () | | | TABLE C1 Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | C | hamber Control | 10 ppm | 30 ppm | 100 ppm | |--|----------------|---------|--------|---------| | Endocrine System | | | | | | Adrenal cortex | (49) | (49) | (50) | (50) | | Adenoma | (-) | 1 (2%) | () | () | | Capsule, adenoma | 3 (6%) | , , | | | | Adrenal medulla | (49) | (49) | (50) | (50) | | Pheochromocytoma malignant | | | 1 (2%) | | | Pheochromocytoma benign | 2 (4%) | | | | | Islets, pancreatic | (49) | (48) | (50) | (50) | | Adenoma | 1 (2%) | | | | | Thyroid gland | (49) | (49) | (50) | (50) | | Follicular cell, adenoma | | 1 (2%) | | | | General Body System None | | | | | | Comital Contains | | | | | | Genital System | (50) | (50) | (50) | (50) | | Epididymis | (50) | (50) | (50) | (50) | | Histiocytic sarcoma | 1 (20/) | | | 1 (2%) | | Sarcoma | 1 (2%) | (50) |
(50) | (50) | | Testes | (50) | (50) | (50) | (50) | | Hemangioma | 1 (20/) | 1 (2%) | | 1 (20/) | | Interstitial cell, adenoma | 1 (2%) | 2 (4%) | | 1 (2%) | | Hematopoietic System | | | | | | Bone marrow | (50) | (48) | (50) | (50) | | Hemangiosarcoma | 2 (4%) | 1 (2%) | | | | Mast cell tumor malignant | 1 (2%) | | | | | Lymph node | | (2) | (1) | | | Iliac, leiomyosarcoma, metastatic, intestine | | | | | | large, rectum | | 1 (50%) | | | | Pancreatic, hepatocholangiocarcinoma, | | | | | | metastatic, liver | | 1 (50%) | | | | Lymph node, bronchial | (35) | (34) | (33) | (37) | | Cholangiocarcinoma, metastatic, liver | | 1 (3%) | | | | Hepatocholangiocarcinoma, metastatic, liver | | 1 (3%) | | | | Histiocytic sarcoma | 1 (3%) | | | | | Lymph node, mandibular | (39) | (27) | (35) | (38) | | Lymph node, mesenteric | (44) | (46) | (47) | (50) | | Carcinoma, metastatic, pancreas | | | 1 (2%) | | | Hemangiosarcoma | 1 (2%) | | | | | Hepatocholangiocarcinoma, metastatic, liver | | 1 (2%) | | | | Lymph node, mediastinal | (37) | (38) | (33) | (29) | | Carcinoma, metastatic, pancreas | | | 1 (3%) | | | Carcinoma, metastatic, intestine small, duodenum | | 1 (3%) | | | | Cholangiocarcinoma, metastatic, liver | | 1 (3%) | | | | Hepatocholangiocarcinoma, metastatic, liver | | 1 (3%) | | | | Histiocytic sarcoma | 1 (3%) | | | | | Mast cell tumor malignant, metastatic, bone marr | | | | | | Sarcoma, metastatic, skin | 1 (3%) | | | | | Spleen | (49) | (48) | (50) | (50) | | Hemangiosarcoma | 1 (2%) | 2 (4%) | | | | Mast cell tumor malignant, metastatic, bone marr | ow 1 (2%) | | | | | Squamous cell carcinoma, metastatic, stomach, | | | | | | Forestomach | | | | 1 (2%) | | Thymus | (44) | (41) | (43) | (44) | TABLE C1 Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | • | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |---|-----------------|---------|---------|----------------| | Integumentary System | | | | | | Skin | (50) | (50) | (50) | (50) | | Subcutaneous tissue, fibrous histiocytoma | 2 (4%) | | 1 (2%) | | | Subcutaneous tissue, hemangioma | 1 (20/) | 1 (2%) | | 1 (2%) | | Subcutaneous tissue, sarcoma | 1 (2%) | 1 (2%) | | | | Musculoskeletal System | | | | | | Skeletal muscle | | (2) | | | | Cholangiocarcinoma, metastatic, liver | | 1 (50%) | | | | Hepatocholangiocarcinoma, metastatic, liver | | 1 (50%) | | | | Nervous System
None | | | | | | Respiratory System | | | | | | Lung | (49) | (49) | (49) | (49) | | Alveolar/bronchiolar adenoma | 10 (20%) | 5 (10%) | 6 (12%) | 13 (27%) | | Alveolar/bronchiolar adenoma, multiple | 2 (4%) | 1 (2%) | * (/*) | 2 (4%) | | Alveolar/bronchiolar carcinoma | 5 (10%) | 4 (8%) | 2 (4%) | 8 (16%) | | Alveolar/bronchiolar carcinoma, multiple | , , | , , | 1 (2%) | 1 (2%) | | Carcinoma, metastatic, pancreas | | | 1 (2%) | | | Cholangiocarcinoma, metastatic, liver | | 1 (2%) | | | | Fibroma | | | | 1 (2%) | | Hemangiosarcoma, metastatic, liver | 1 (2%) | 1 (2%) | | | | Hepatocellular carcinoma, metastatic, liver | 6 (12%) | 5 (10%) | 3 (6%) | 1 (2%) | | Hepatocholangiocarcinoma, metastatic, liver | 1 (2%) | 1 (2%) | | | | Histiocytic sarcoma | 1 (2%) | | | | | Mast cell tumor malignant, metastatic, bone ma | | | | | | Sarcoma, metastatic, skin | 1 (2%) | | | | | Bronchus, adenoma | | | | 1 (2%) | | Special Senses System | | | | | | Harderian gland | (50) | (49) | (50) | (50) | | Adenoma | 5 (10%) | 3 (6%) | 6 (12%) | 7 (14%) | | Carcinoma | 1 (2%) | 1 (2%) | | | | Urinary System | | | | | | Kidney | (50) | (50) | (50) | (50) | | Alveolar/bronchiolar carcinoma, metastatic, lun | | 1 (2%) | (==) | (50) | | Hepatocholangiocarcinoma, metastatic, liver | 1 (2%) | 1 (2%) | | | | Renal tubule, adenoma | ('' ") | 1 (2%) | | | | Renal tubule, carcinoma | 1 (2%) | | | | | Systemic Lesions | | | | | | Multiple organs ^b | (50) | (50) | (50) | (50) | | Histiocytic sarcoma | (50)
1 (2%) | (50) | (50) | (50)
1 (2%) | | Lymphoma malignant | 1 (2%) | | 1 (2%) | 1 (2%) | | Lymphoma mangham | 1 (2/0) | | 1 (2/0) | 1 (2/0) | TABLE C1 Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |---|------------------------|--------|--------|---------| | Neoplasm Summary | | | | | | Total animals with primary neoplasms ^c | 43 | 38 | 29 | 41 | | Total primary neoplasms | 90 | 60 | 44 | 67 | | Total animals with benign neoplasms | 35 | 24 | 21 | 27 | | Total benign neoplasms | 49 | 34 | 25 | 47 | | Total animals with malignant neoplasms | 26 | 21 | 14 | 23 | | Total malignant neoplasms | 41 | 26 | 19 | 27 | | Total animals with metastatic neoplasms | 9 | 10 | 4 | 3 | | Total metastatic neoplasms | 14 | 23 | 7 | 3 | a b Number of animals examined microscopically at the site and the number of animals with neoplasm Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms TABLE C2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 4
5
6 | 5
1
7 | 5
3
6 | 5
6
5 | 5
7
3 | 6
0
9 | 6
2
0 | 6
6
2 | 6
7
6 | 7
2
9 | 7
2
9 | 7
2
9 | 7 2
2 2
9 9 | 7 7
2 2
9 9 | 7 2 2 9 | 7
2
9 |--|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------------|-------------------|---------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | Carcass ID Number | 0
1
7 | 2 | 0
2
2 | 0
0
5 | 0
2
4 | 0
3
8 | 0
3
9 | 0
3
5 | | 0
0
1 | 0 | 0 | 0 0 7 | | 2 | | 0
2
6 | 0
2
7 | 0
3
0 | 0
3
1 | 0
3
4 | 0
3
7 | 0
4
0 | | | Alimentary System | Esophagus | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | Gallbladder | A | M | + | + | + | + | + | M | + | + | + | + | + - | + N | 1 + | + | + | Μ | + | + | + | + | + | + | | Adenoma | Intestine large, colon | A | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | ntestine large, rectum | A | Α | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | ntestine large, cecum | A | Α | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | Polyp adenomatous | ntestine small, duodenum | A | Α | + | + | + | + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | + | + | | ntestine small, jejunum | | A | | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | Carcinoma | | | | | | X | | | | | | | | | | | | | | | X | | | | | ntestine small, ileum | A | Α | + | + | + | | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | iver | + | | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | Hemangiosarcoma | | | | | | X | | Χ | | | | | | | | | | | X | | | | | | | Hepatocellular carcinoma | | | | X | X | X | X | | | | | | | | | | | | | | | X | | | | Hepatocellular carcinoma, multiple | | | | | | | | Χ | | | | | | | | | | | | | | | | | | Hepatocellular adenoma | | | | | | | | Χ | | | | | | | X | | X | | | | | | | | | Hepatocellular adenoma, multiple | X | | | | | | | | | | | | X | | | | | X | | | X | X | X | | | Hepatocholangiocarcinoma | Mesentery | | | + | | | | | + | | | | | - | + | | | | + | + | | | | | | | Oral mucosa | | | | + | Pharyngeal, squamous cell carcinoma | | | | X | ancreas | A | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | Salivary glands | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | Stomach, forestomach | A | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | Squamous cell papilloma | Stomach, glandular | A | Α | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | Cooth | | + | + | + | + | | | + | + | + | + | + | + - | + + | - | + | + | + | + | + | + | | + | + | | Cardiovascular System | Heart | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | Hemangiosarcoma
Histiocytic sarcoma | | | | | | | | X | | | | | 2 | X | | | | | | | | | | | | Endocrine System | Adrenal cortex | A | + | + | + | + | + | + | + | + | + | + | + | + - | + + | | + | + | + | + | + | + | + | + | + | | Capsule, adenoma | | | | | | | | | | | | | | | X | | | | X | | | | | | | Adrenal medulla | A | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | Pheochromocytoma benign | | | | | | | | | | | | | | | | | | | X | | | | | | | slets, pancreatic
Adenoma | A | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | | _ | + | + | + | Μ | M | M | M | + | M | + | + | + - | + + | - + | М | Μ | + | + | + | + | + | + | + | Parathyroid gland
Pituitary gland | + | + | + | + | + | + | + | + | M | + | + | + | + - | + 1 |
+ | + | + | + | + | + | + | + | + | + | +: Tissue examined microscopically A: Autolysis precludes examination M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined TABLE C2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 7
2
9 | 7
2
9 | 7
2
9 | 7
2
9 | 7
3
0 7
3
1 | 7
3
1 | 7
3
1 | 7
3
1 | 7
3
1 | | |--|-----------------------------| | Carcass ID Number | 0
4
4 | 0
4
8 | 0
4
9 | 0
5
0 | 0
0
2 | 0
0
9 | 0
1
0 | 0
1
2 | 0
1
4 | 0
1
5 | 0
1
8 | 0
1
9 | 0
2
8 | | 0
3
2 | 0
3
6 | 0
4
2 | 0
4
3 | 0
4
5 | 0
4
7 | 0
0
6 | 0
0
8 | 0
1
6 | 0
2
1 | 0
4
6 | Total
Tissues/
Tumors | | Alimentary System | Esophagus | + | 50 | | Gallbladder | I | + | Ι | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | Ι | + | + | + | + | + | 42 | | Adenoma | | X | 1 | | Intestine large, colon | + | 49 | | Intestine large, rectum | + | 48 | | Intestine large, cecum | + | 48 | | Polyp adenomatous | | | | | | | | | | | X | | | | | | | | | | | | | | | 1 | | Intestine small, duodenum | + | 48 | | Intestine small, jejunum
Carcinoma | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Intestine small, ileum | + | 48 | | Liver | + | 50 | | Hemangiosarcoma | 3 | | Hepatocellular carcinoma | X | | | X | | | | X | | | | | | Χ | X | X | | | | | | X | | | | 12 | | Hepatocellular carcinoma, multiple | 1 | | Hepatocellular adenoma | | | | | | | | | | | | | | Χ | | X | X | X | X | | X | | | X | | 10 | | Hepatocellular adenoma, multiple | | X | X | | | | X | | | X | | | | | | | | | | X | | X | | | | 12 | | Hepatocholangiocarcinoma | | | | | | X | 1 | | Mesentery | | + | | | | + | | | | | | | | | + | | | | + | | + | | | + | | 11 | | Oral mucosa | 1 | | Pharyngeal, squamous cell carcinoma | 1 | | Pancreas | + | 49 | | Salivary glands | + | 50 | | Stomach, forestomach | + | 49 | | Squamous cell papilloma | | | | | | | | Χ | | | | | | | | | | | | | | | | | | 1 | | Stomach, glandular | + | 48 | | Tooth | + | + | | | + | + | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 41 | | Cardiovascular System | Heart | + | 50 | | Hemangiosarcoma
Histiocytic sarcoma | | | | | | X | 2 | | Endocrine System | Adrenal cortex | + | 49 | | Capsule, adenoma | | | | | | | | | | | | | | | | | | X | | | | | | | | 3 | | Adrenal medulla | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | 49 | | Pheochromocytoma benign | | | | X | 2 | | Islets, pancreatic Adenoma | + | + | + | | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49
1 | | Parathyroid gland | + | + | Μ | + | + | + | + | M | | + | Μ | + | M | M | + | + | + | + | + | M | + | + | + | M | M | 35 | | Pituitary gland | + | | + | 48 | | Thyroid gland | | | | | | | | | + | | + | + | | + | | + | | | Ċ | | | | | | + | 49 | TABLE C2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | of Divinymenzene-III. Chambe | Contro |------------------------------|--------|-------------------|-------------------|------------|-----|-------------|--------------|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---|--| | Number of Days on Study | | 4 5
5 1
6 7 | 5 5
1 3
7 (| 3 6 | _ | 6
0
9 | 6
2
0 | | 6
7
6 | 7
2
9 | | | Carcass ID Number | | 0 (
1 2
7 3 | 2 2 | | 2 | 3 | | 3 | | 0 | 0 | 0
0
4 | 0 | 0
1
1 | 1 | 2 | 0
2
5 | 0
2
6 | 2 | | 0
3
1 | | | | 4 | | | General Body System None | Genital System | Epididymis | | + + | | + + | | | Sarcoma | X | | | Preputial gland | | + + | - + | + + | | | Prostate | | + A | | + + | + | + | + | + | + | + | + | + | + | + | + | Ī | + | + | + | + | + | + | + | + | + | | | Seminal vesicle | | + 4 | | + + | + | + | + | + | + | + | + | + | + | + | + | - | + | | + | + | + | + | + | + | + | | | Testes | | . <i>r</i> | | · | . + | + | + | + | + | + | + | + | + | + | | | + | | + | + | + | + | + | + | + | | | Interstitial cell, adenoma | | . 7 | | | | ' | ' | ' | ' | ' | | ' | ' | ' | | ' | ' | | | ' | 1 | | 1 | | , | | | Hematopoietic System | Bone marrow | | + + | - + | + + | | | Hemangiosarcoma | | | | | | X | Mast cell tumor malignant | | | | | | | | | X | | | | | | | | | | | | | | | | | | | Lymph node, bronchial | | + + | - 1 | л м | 1 + | М | М | + | | + | + | + | М | М | М | М | + | М | + | + | + | М | + | + | + | | | Histiocytic sarcoma | | | 1, | 1 141 | | 111 | 111 | | · | | | | 111 | 171 | 111 | 111 | | 141 | | | · | 171 | | | | | | Lymph node, mandibular | | + + | - + | L + | + | + | + | + | + | + | + | + | + | Μ | м | + | м | м | + | + | + | + | + | + | + | | | Lymph node, mesenteric | | A + | | + | . + | Hemangiosarcoma | | Δ. | | ' | | 1 | ' | ' | ' | 1 | ' | 171 | | ' | | ' | ' | ' | ' | ' | ' | X | | | ' | | | | | | | ⊦ M | r ı | | ъ. | | | | | | | 1.1 | | | | M | 1.1 | | | | | 1.1 | | | | Lymph node, mediastinal | | - 1 | 7 | 1V. | ı T | _ | 1 V 1 | Т | - | - | -T | - | - | IVI | 7 | 7" | Τ' | ıvı | ıvı | 7" | - | т | ıVI | ıvı | | | | Histiocytic sarcoma | Mast cell tumor malignant, | | | | | | | | | 37 | | | | | | | | | | | | | | | | | | | metastatic, bone marrow | | | | , | | | | | X | | | | | | | | | | | | | | | | | | | Sarcoma, metastatic, skin | | | | ζ | Spleen | | A - | - + | + + | | | Hemangiosarcoma | | | | | | | | Χ | Mast cell tumor malignant, | metastatic, bone marrow | | | | | | | | | X | | | | | | | | | | | | | | | | | | | Thymus | | + + | - + | + + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Integumentary System | Mammary gland |] | M N | 1 N | Л М | I M | M | M | M | Μ | M | Μ | M | Μ | M | Μ | M | M | M | M | Μ | Μ | Μ | M | M | M | | | Skin | | + + | - + | + + | | | Subcutaneous tissue, fibrous | histiocytoma | Subcutaneous tissue, sarcoma | | | 2 | ζ. | Musculoskeletal System | Bone | | + + | - + | + + | | |
Nervous System | Brain | | + + | _ 4 | + + | | | | | . ' | | | | ' | ' | | | | | | | | | | | | | | , | | | | | | TABLE C2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 7
2
9 | 7
2
9 | 7
2
9 | 7
2
9 | 7
3
0 7
3
1 | 7
3
1 | 7
3
1 | 7
3
1 | 7
3
1 | | |--|-----------------------------| | Carcass ID Number | 0
4
4 | 0
4
8 | 0
4
9 | 0
5
0 | 0
0
2 | | | 1 | | 1 | 1 | 1 | 2 | 0
2
9 | 3 | | | 4 | 0
4
5 | 0
4
7 | | 0 | 0
1
6 | 2 | 0
4
6 | Total
Tissues/
Tumors | | General Body System None | Genital System | Epididymis | + | 50 | | Sarcoma | 1 | | Preputial gland | + | 50 | | Prostate Seminal vesicle | + | 48
49 | | Testes | + | 50 | | Interstitial cell, adenoma | | · | Ċ | | | | | | · | · | | · | · | | | | | | | | | · | Ċ | | X | 1 | | Hematopoietic System | Bone marrow | + | 50 | | Hemangiosarcoma | X | | | | 2 | | Mast cell tumor malignant | 1 | | M | | | | M | | | | | | | M | | 1.1 | | | | | | ъ. | | | | 1 | | Lymph node, bronchial
Histiocytic sarcoma | + | + | IVI | + | + | X | IVI | + | + | + | + | + | + | M | + | IVI | + | + | + | + | + | IVI | + | + | + | 35
1 | | Lymph node, mandibular | + | М | Μ | + | + | | ī | + | + | + | + | М | + | M | + | + | + | М | М | + | + | + | + | + | + | 39 | | Lymph node, mesenteric | + | + | | + | + | + | + | + | + | | | + | | | | | + | | | | | | | + | | 44 | | Hemangiosarcoma | 1 | | Lymph node, mediastinal | M | + | + | M | + | | + | + | + | + | + | + | + | + | M | M | + | M | + | + | M | + | + | + | + | 37 | | Histiocytic sarcoma Mast cell tumor malignant, metastatic, bone marrow Sarcoma, metastatic, skin | | | | | | X | 1
1
1 | | Spleen | + | 49 | | Hemangiosarcoma
Mast cell tumor malignant, | 1 | | metastatic, bone marrow
Thymus | + | + | M | + | + | + | M | + | + | + | + | + | M | M | + | + | + | M | + | + | + | + | + | + | + | 1
44 | | Integumentary System | Mammary gland | М | М | М | М | М | М | М | М | М | М | М | М | М | Μ | М | М | М | М | М | М | М | М | М | М | M | | | Skin | | | | | | | | | | | | | | + | | | | | | | | | | | | 50 | | Subcutaneous tissue, fibrous histiocytoma | | | | | | | | | | | | | | X | | | | | | X | | | | | | 2 | | Subcutaneous tissue, sarcoma | -1 | | | | | | 1 | | Musculoskeletal System | Bone | + | 50 | | Nervous System | Brain | + | 50 | TABLE C2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | <u> </u> |---|-----|---|---|---|--------|---|----------|-----|---|-----|-----|----|---|---|---|---|-----|---|---|---|---|------------|---|-----| | Number of Days on Study | 4 5 | 5 | 5 | 5 | 5
7 | | 6 (| | | 7 2 | 7 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 2 | | Number of Days on Study | 6 | | 6 | 5 | | | 0 2 | | _ | | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | _ | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 (|) 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Carcass ID Number | 1 | 2 | 2 | 0 | 2 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | | | 7 | 3 | 2 | 5 | 4 | 8 | 9 : | 5 3 | 1 | 3 | 4 | 7 | 1 | 3 | 0 | 5 | 6 | 7 | 0 | 1 | 4 | 7 | 0 | 1 | | Respiratory System | Larynx | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Lung | A | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Alveolar/bronchiolar adenoma
Alveolar/bronchiolar adenoma,
multiple | | | X | | | | | | | X | | | X | | X | | | | | X | | | | | | Alveolar/bronchiolar carcinoma | | | | | | | | | | | | X | | | | | X | | | | | Х | | | | Hemangiosarcoma, metastatic, liver | | | | | | X | | | | | | 11 | | | | - | . 1 | | | | | 2 1 | | | | Hepatocellular carcinoma, metastatic, | liver | | | | | X | X | X | | | | | | | | | | | | | | | | | | | Hepatocholangiocarcinoma, metastatic, | liver Histiocytic sarcoma | Mast cell tumor malignant, | metastatic, bone marrow | | | | | | | | Х | | | | | | | | | | | | | | | | | | Sarcoma, metastatic, skin | | | X | | | | | 21 | | | | | | | | | | | | | | | | | | Nose | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Trachea | + | + | + | + | + | + | ·
+ - | - + | + | + | + | + | + | + | + | + | + - | + | + | + | + | + | + | + | Special Senses System | Eye | + | Α | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Harderian gland | + | + | + | + | + | + | + - | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Adenoma | Carcinoma | Urinary System | Kidney | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Hepatocholangiocarcinoma, metastatic, liver | Renal tubule, carcinoma | | | | | | | 2 | | | | | | | | | | | | | | | | | | | Urinary bladder | A | A | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Systemic Lesions | Multiple organs | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Histiocytic sarcoma
Lymphoma malignant | Χ | | | | | | TABLE C2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 7
2
9 | 7
2
9 | 7
2
9 | 7
2
9 | 7
3
0 7
3
1 | 7
3
1 | 7
3
1 | 7
3
1 | 7
3
1 | | |---|-----------------------------| | Carcass ID Number | 0
4
4 | 0
4
8 | 0
4
9 | 0
5
0 | 0
0
2 | 0
0
9 | 0
1
0 | 0
1
2 | 0
1
4 | 0
1
5 | 0
1
8 | 0
1
9 | 0
2
8 | 0
2
9 | 0
3
2 | 0
3
6 | 0
4
2 | 0
4
3 | 0
4
5 | 0
4
7 | 0
0
6 | 0
0
8 | 0
1
6 | - | 0
4
6 | Total
Tissues/
Tumors | | Respiratory System | Larynx | + | 50 | | Lung | + | 49 | | Alveolar/bronchiolar adenoma | | | X | | | X | | X | | | | | | | | | X | | Χ | | | | | | | 10 | | Alveolar/bronchiolar adenoma, | multiple | | | | | | | | | | | X | | X | | | | | | | | | | | | | 2 | | Alveolar/bronchiolar carcinoma | | | X | | | | X | | | | | | | | | | | | | | | | | | | 5 | | Hemangiosarcoma, metastatic, liver | 1 | | Hepatocellular carcinoma,
metastatic, | X | | | v | | | | | | | | | | | | X | | | | | | | | | | | | liver Hepatocholangiocarcinoma, metastatic, | Λ | | | X | | | | | | | | | | | | Λ | | | | | | | | | | 6 | | liver | | | | | | X | 1 | | Histiocytic sarcoma | | | | | | X | 1 | | Mast cell tumor malignant, | | | | | | Λ | 1 | | metastatic, bone marrow | 1 | | Sarcoma, metastatic, skin | 1 | | Nose | + | 50 | | Trachea | + | 50 | | Special Senses System | Eye | + | 49 | | Harderian gland | + | 50 | | Adenoma | X | | | | | X | | | | | | | Χ | Χ | | | | | | | | | | X | | 5 | | Carcinoma | | | | | | | | | | | | X | | | | | | | | | | | | | | 1 | | Urinary System | Kidney | + | 50 | | Hepatocholangiocarcinoma, metastatic, | liver | | | | | | X | 1 | | Renal tubule, carcinoma | 1 | | Urinary bladder | + | 48 | | Systemic Lesions | Multiple organs | + | 50 | | Histiocytic sarcoma | | | | | | X | 1 | | Lymphoma malignant | 1 | | TABLE C2 | | |---|--------| | Individual Animal Tumor Pathology of Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP: | 10 ppm | | | 3 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | |---|-----|---|--------|---|-----|---|---|----|--------|---|---|---|-----|------------|-----|---|-----|---|---|---|---|---|---|---| | Number of Days on Study | 3 8 | 4 | 5
6 | 0 | 2 | | 4 | | 9
7 | 0 | 1 | 1 | | 2 2 | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | | | | _ | | | _ | | _ | | | | | | | _ | _ | _ | _ | _ | _ | _ | | | Carcass ID Number | 2 | 2 | 2 2 | 2 | 2 2 | 2 | 2 | | 2 | 2 | | | | 2 2 | | 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | 8 | 5 | | | | | | | | | | | 4 (| | | | | | | | | | 4 | | | Alimentary System | Esophagus | + | + | | | + | | | | + | | | + | | | | + | + | + | + | + | + | + | + | + | | Gallbladder | | | | | | | | | | | | | Ι . | | | | | Ι | | + | M | + | + | + | | Intestine large, colon | | | | | | | | | | | | | + - | | | | | + | + | + | + | + | + | + | | ntestine large, rectum | | Α | + | I | Α | + | + | + | + | Α | + | A | + - | + + | + | + | + | + | + | + | + | + | + | + | | Leiomyosarcoma | X | | | , | | | | | | | | | | | | | | , | | | | | | | | Intestine large, cecum | A | Α | + | + | A | + | + | + | + | + | + | A | + - | + + | + | + | + | + | + | + | + | + | + | + | | Carcinoma Hepatocholangiocarcinoma, metastatic, liver | | | | | | | | | | X | | | | | | | X | | | | | | | | | ntestine small, duodenum | Λ | Δ | + | + | Δ | + | + | + | | | + | Δ | + - | ⊢ ⊥ | . + | + | + | + | + | + | + | + | + | + | | Carcinoma | Α | А | г | - | А | | Υ | 1. | 1. | Л | 1 | Л | ' ' | . Т | 7' | | Г | ۲ | ٢ | г | Г | Г | Т | 1 | | ntestine small, jejunum | А | Α | + | + | Α | | | + | + | Α | + | Α | + - | + + | + | + | + | + | + | + | + | + | + | + | | ntestine small, ileum | | A | | + | A | | | | + | | | A | | | | + | + | + | + | + | + | + | + | + | | iver | + | | | | | | | | | | | | + - | | | | | | + | + | + | + | + | + | | Cholangiocarcinoma | Hemangiosarcoma | | | | | | | | | | | | X | | | | | | | | | | | | | | Hepatocellular carcinoma | | | | | X | X | Χ | Χ | | | | X | | | | | | X | | | X | | | X | | Hepatocellular carcinoma, multiple | | | | X | Hepatocellular adenoma | | X | | | | | | | | X | | | 2 | X | X | | | | X | | | | | X | | Hepatocellular adenoma, multiple | | | X | | | X | Hepatocholangiocarcinoma | | | | | | | | | | X | | | | | | | | | | | | | | | | lesentery | | | | | | | | | | | | | | + | | | + | | | | | | | | | ancreas | A | A | + | + | + | + | | | | | + | + | + - | + + | | + | + | + | + | + | + | + | + | + | | alivary glands | + | + | + | + | + | + | | | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | stomach, forestomach | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | Squamous cell papilloma | stomach, glandular | + | A | | + | Α | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | Cooth | | | + | | + | + | + | | + | | + | | + - | + + | + | + | + | + | + | + | | + | + | + | | Cardiovascular System | Blood vessel | | | | , | | | | | | | + | | | | | | | , | | | | | | | | Heart Chalanaia agraina ma matastatia livar | + | A | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | Cholangiocarcinoma, metastatic, liver | Hepatocholangiocarcinoma, metastatic, liver | | | | | | | | | | X | | | | | | | | | | | | | | | | Endocrine System | drenal cortex
Adenoma | | A | | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | drenal medulla | | | | | + | | | | | | | | | + + | + | + | + | + | + | + | + | + | + | + | | slets, pancreatic | | Α | | + | | | | | | | | | | + + | | + | + | + | + | + | + | + | + | + | | arathyroid gland | | | | | | | | | | | | | + - | | | | | | | | + | + | + | + | | ituitary gland | | | | | | + | | | + | | | | + - | | | + | + | + | + | + | + | + | + | + | | hyroid gland Follicular cell, adenoma | + | A | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | | contentar cent agenoma | 1 omediar cen, adenoma | General Body System | 7 | | |---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------|-------------|-------------|---|---|---|-------------|-------------|-------------|-----|-------------|---|-------------|-------------|-------------|---|----------------------------| | Number of Days on Study | 2 | 3 | | | | 2 | _ | | | | _ | | | | _ | | _ | | _ | 2 | _ | _ | _ | _ | _ | _ | _ | _ | | 2 | T-4- | | Carcass ID Number | 2
4
6 | 2
0
1 | 2
0
2 | 2
0
3 | 2
0
6 | 2
0
7 | 2
1
6 | 2
1
7 | 2
2
0 | 2 2 2 | 2
2
9 | 2
3
1 | | | 0 | 2
1
1 | 2
1
8 | 2
2
5 | 2 6 | 2
3
2 | 3 | 2
4
0 | 2
4
1 | 2
4
7 | 5 | Total
Tissues
Tumors | | Alimentary System | Esophagus | + | 50 | | Gallbladder | + | + | + | + | + | + | + | M | + | + | + | I | | + | + | + | + | M | M | Ι | + | + | + | + | + | 34 | | Intestine large, colon | + | 45 | | Intestine large, rectum | + | 45 | | Leiomyosarcoma | 1 | | Intestine large, cecum Carcinoma | + | 46
1 | | Hepatocholangiocarcinoma, metastatic, liver | 1 | | Intestine small, duodenum | + | 45 | | Carcinoma | 1 | | Intestine small, jejunum | + | 45 | | Intestine small, ileum | + | 45 | | Liver | + | 50 | | Cholangiocarcinoma | X | 1 | | Hemangiosarcoma | | | X | 1 | | Hepatocellular carcinoma Hepatocellular carcinoma, multiple | | | Λ | | | | | | | | | | | | | | | | X | | | | | | | 2 | | Hepatocellular adenoma | | X | | X | | | | | | | X | | | | | | X | | Λ | | | x |
X | | | 12 | | Hepatocellular adenoma, multiple | | 21 | | 21 | | | | X | | | 21 | | X | | X | | 21 | | | | | 21 | 21 | | | 5 | | Hepatocholangiocarcinoma | 1 | | Mesentery | | | | | | | + | | | | | | | | | | | + | | | | | | | | 4 | | Pancreas | + | 48 | | Salivary glands | + | 50 | | Stomach, forestomach | + | 50 | | Squamous cell papilloma | | | | | | | | | | | Χ | | | | | | | | | | | | | | | 1 | | Stomach, glandular | + | 48 | | Tooth | + | 43 | | Cardiovascular System | Blood vessel | 1 | | Heart | + | 49 | | Cholangiocarcinoma, metastatic, liver
Hepatocholangiocarcinoma, metastatic,
liver | X | 1 | | Endocrine System | Adrenal cortex | + | 49 | | Adenoma | X | | | 1 | | Adrenal medulla | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Islets, pancreatic | + | + | + | + | + | + | + | + | + | + | + | + | | + | | + | + | + | + | + | + | + | + | + | + | 48 | | Parathyroid gland | M | + | + | + | + | + | + | + | + | M | | + | | | | | + | | M | + | + | + | M | M | | 39 | | Pituitary gland
Thyroid gland | + | 47 | | LINTOIG GIANG | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49
1 | | Follicular cell, adenoma | | | | | | | | 21 | TABLE | C2 | |--------------|----| |--------------|----| | TABLE C2 Individual Animal Tumor Pathology | of Ma | le | Mi | ce i | in 1 | the | 2- | Ye | ar | In | hal | lati | on | St | ud | y o | fΣ |)ivi | iny | lbe | enz | en | e-F | IP: | 10 ppm | |---|-------------| | Number of Days on Study | 3
3
8 | 5
4
3 | 5
5
6 | 6
0
0 | 6
2
9 | 6
3
9 | 6
4
1 | 6
7
2 | 6
9
7 | 7
0
2 | 7
1
1 | 7
1
6 | 7
2
9 | Carcass ID Number | 2
0
8 | 2
0
5 | 2
2
3 | 2
1
5 | 2
2
7 | 2
3
0 | 2
3
6 | 2
2
1 | 2
1
9 | 2
4
9 | 2
4
8 | 2
2
4 | 2
0
4 | 2
1
0 | | | | | 2
3
3 | | 2
3
8 | 2
4
2 | 2
4
3 | 2
4
4 | 4 | | Genital System | Epididymis
Preputial gland
Prostate | +
+
A | + + + | +++++ | +++++ | ++++++ | ++++++ | ++++++ | ++++++ | + + + + | +
+
A | + + + | ++++++ | + + + | +++++ | +++++ | + + + | +++++ | + + + | + + + | + + + | +++++ | + + + | +++++ | +++++ | +
+
+ | | Seminal vesicle
Testes | A
+ | + | + | + | + | + | + | + | + | A
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + + | | Hemangioma
Interstitial cell, adenoma | | | | | | | | | | | | | X | | X | | | | | | | | | | | | Hematopoietic System | Bone marrow Hemangiosarcoma Lymph node Iliac, leiomyosarcoma, metastatic, | A
+ | A | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | | intestine large, rectum Pancreatic, hepatocholangiocarcinoma, metastatic, liver | X | | | | | | | | | X | | | | | | | | | | | | | | | | | Lymph node, bronchial
Cholangiocarcinoma, metastatic, liver
Hepatocholangiocarcinoma, metastatic, | A | + | M | M | + | + | + | + | + | | + | M | + | + | M | M | + | + | + | M | + | M | + | + | M | | liver Lymph node, mandibular | | | | | | | | | | | | + | | | | | | | | | | | | | | | Lymph node, mesenteric Hepatocholangiocarcinoma, metastatic, liver | A | A | | | | | | | | X | | Ι | | | | | | | | | | | | | | | Lymph node, mediastinal Carcinoma, metastatic, intestine small, duodenum | A | + | + | + | + | + | +
X | + | M | + | + | + | + | M | + | + | + | M | + | + | + | + | M | M | + | | Cholangiocarcinoma, metastatic, liver
Hepatocholangiocarcinoma, metastatic,
liver | | | | | | | | | | X | | | | | | | | | | | | | | | | | Spleen
Hemangiosarcoma | A | A | + | + | + | + | + | + | + | + | + | +
X | | + | + | + | + | + | + | + | + | + | + | + | + | | Thymus | A | M | M | M | + | + | M | + | + | + | + | M | | + | + | + | + | + | M | + | + | M | + | + | + | | Integumentary System | Mammary gland
Skin | | | | | | | | | | | | M
+ | | | | | | | | | | | | | | | Subcutaneous tissue, hemangioma
Subcutaneous tissue, sarcoma | | | | | | | | | X | | | | | | | | | X | | | | | | | | | Musculoskeletal System | Bone Skeletal muscle Cholangiocarcinoma, metastatic, liver Hepatocholangiocarcinoma, metastatic, | + | | liver | | | | | | | | | | X | | | | | | | | | | | | | | | | | Nervous System
Brain | + | | | 7 | | |---|---|-----|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|---|---|---|-----|---|---|---|---|---------| | Number of Days on Study | 2 | 3 | | | | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 2 | Total | | Carcass ID Number | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 5 | Tissues | | Carcass ID Number | 6 | | | | | 7 | | | | | | | | | | | | | | | | | | 7 | | Tumors | Genital System Epididymis | _ | | _ | 50 | | Preputial gland | + | 50 | | Prostate | + | 48 | | Seminal vesicle | + | 48 | | Testes | + | 50 | | Hemangioma | 1 | | Interstitial cell, adenoma | X | | | | 2 | | Hematopoietic System | Bone marrow | + | 48 | | Hemangiosarcoma | 1 | | Lymph node | 2 | | Iliac, leiomyosarcoma, metastatic, | 1 | | intestine large, rectum Pancreatic, hepatocholangiocarcinoma, | 1 | | metastatic, liver | 1 | | Lymph node, bronchial | М | + | Μ | + | + | + | + | + | + | + | М | + | + | + | + | + | + | + | М | М | М | + | М | + | + | 34 | | Cholangiocarcinoma, metastatic, liver | | | 111 | | | | | | | | | | | | | | | | | | 111 | | | | X | 1 | | Hepatocholangiocarcinoma, metastatic, | liver | 1 | | Lymph node, mandibular | M | + | M | M | M | M | + | M | M | + | + | + | + | M | + | + | M | + | + | + | + | + | M | + | + | 27 | | Lymph node, mesenteric | + | 46 | | Hepatocholangiocarcinoma, metastatic, | liver | | | | | | | | | | | | | | | | | 3.6 | | | | | | | | | 1 | | Lymph node, mediastinal | M | + | + | + | M | + | + | + | + | + | + | M | M | + | + | + | M | + | + | + | + | M | + | + | + | 38 | | Carcinoma, metastatic, intestine small, duodenum | 1 | | Cholangiocarcinoma, metastatic, liver | X | 1 | | Hepatocholangiocarcinoma, metastatic, | Λ | | | liver | 1 | | Spleen | + | + | + | + | + | + | +
| + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Hemangiosarcoma | | | | | | | | | | | | X | | | | | | | | | | | | | | 2 | | Thymus | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | 41 | | Integumentary System | Mammary gland | M | | | Skin | + | 50 | | Subcutaneous tissue, hemangioma
Subcutaneous tissue, sarcoma | 1
1 | | Musculoskeletal System | Bone | + | 50 | | Skeletal muscle | , | | | | | | | · | | | | | | | | | | | | | | · | | | + | 2 | | Cholangiocarcinoma, metastatic, liver | X | 1 | | Hepatocholangiocarcinoma, metastatic, liver | 1 | | Nervous System | Brain | 1 | - 1 | 50 | | Number of Days on Study 3 | Individual Animal Tumor Patholog | y UI IVIA | 110 | 1411 | | 111 | tiic | | 10 | aı | 111 | IIa | lati | UII | St | uu | y u | 1 1 | 1111 | шу | 100 | -112 | 2011 | C-1 | | . 10 | ppin | |--|---------------------------------------|-----------|-----|------|----|-----|------|---|----|----|-----|-----|------|-----|----|----|-----|-----|------|----|-----|------|------|-----|---|------|------| | S 3 6 0 9 1 2 7 2 1 6 9 9 9 9 9 9 9 9 9 | | 3 | 5 | | | | | | | | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | , | 7 | 7 | 7 | 7 | , | | | | Carcass ID Number 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Number of Days on Study | | - | | | | | 4 | | 9 | 0 | 1 | 1 | | | | | | | | | | 2 | 2 | | | | | Carcass ID Number 0 | | 8 | 3 | 6 | 0 | 9 | 9 | 1 | 2 | 7 | 2 | 1 | 6 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | | Respiratory System Larynx | | 2 | | | Respiratory System Larynx | Carcass ID Number | 0 | 0 | 2 | 1 | 2 | 3 | 3 | 2 | 1 | 4 | 4 | 2 | 0 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | | | Larynx | | 8 | 5 | 3 | 5 | 7 | 0 | 6 | 1 | 9 | 9 | 8 | 4 | 4 | 0 | 2 | 3 | 4 | 8 | 3 | 5 | 8 | 2 | 3 | 4 | 5 | | | Larynx | Respiratory System | Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Cholangiocarcinoma, metastatic, liver Hemangiosarcoma, metastatic, liver Hepatocellular carcinoma, metastatic, liver Hepatocholangiocarcinoma, metastatic, liver Hepatocholangiocarcinoma, metastatic, liver Hepatocholangiocarcinoma, metastatic, liver Hepatocholangiocarcinoma, metastatic, liver Special Senses System Eye A A + + + + + + + + + + + + + + + + + | | + | | | Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Cholangiocarcinoma, metastatic, liver Hemangiosarcoma, metastatic, liver Hepatocellular carcinoma, metastatic, liver Hepatocellular carcinoma, metastatic, liver Hepatocholangiocarcinoma, metastatic, liver Hepatocholangiocarcinoma, metastatic, liver Nose + + + + + + + + + + + + + + + + + + + | Lung | + | Α | + | | | Alveolar/ronchiolar carcinoma Cholangiocarcinoma, metastatic, liver Hemangiosarcoma, metastatic, liver Hepatocellular carcinoma, metastatic, liver Hepatocholangiocarcinoma, metastatic, liver Hepatocholangiocarcinoma, metastatic, liver Nose | Alveolar/bronchiolar adenoma, | | | | | | | | | | | | | | | | | X | X | | | | | | | | | | Cholangiocarcinoma, metastatic, liver Hemangiosarcoma, metastatic, liver Hepatocellular carcinoma, metastatic, liver Hepatocholangiocarcinoma, metastatic, liver Nose + + + + + + + + + + + + + + + + + + + | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | Hemangiosarcoma, metastatic, liver Hepatocellular carcinoma, metastatic, liver Hepatocellular carcinoma, metastatic, liver X | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | Hepatocellular carcinoma, metastatic, liver | | | | | | | | | | | | | v | | | | | | | | | | | | | | | | liver X <td></td> <td>Λ</td> <td></td> | | | | | | | | | | | | | Λ | | | | | | | | | | | | | | | | Nose + + + + + + + + + + + + + + + + + + + | | | | | | | | | Х | | | | X | | | | | | | | | | X | | | X | | | Nose + + + + + + + + + + + + + + + + + + + | | | | | | | | | | | | | - | | | | | | | | | | _ | | | | | | Special Senses System Eye | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | Special Senses System Eye | | + | + | + | + | + | + | + | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | | | Eye | Trachea | + | | | Harderian gland | Adenoma Carcinoma Urinary System Kidney | | A | | | | + | | | | | | | | | | | | | | | + | + | + | + | | | | | Carcinoma Urinary System Kidney + + + + + + + + + + + + + + + + + + + | | | 7' | 7' | 7" | 7' | | Т | _ | _ | А | | | | | | 7 | _ | 7 | Т | 7 | 7 | 7 | -T | - | Т | | | Kidney + + + + + + + + + + + + + + + + + + + | | | | | | | | | | | | 21 | | 21 | | | | | | | | | | | | | | | Alveolar/bronchiolar carcinoma, metastatic, lung Hepatocholangiocarcinoma, metastatic, liver Renal tubule, adenoma Urinary bladder A + + + + + + + + + + + + + + + + + + | metastatic, lung Hepatocholangiocarcinoma, metastatic, liver Renal tubule, adenoma Urinary bladder A + + + + + + + + + + + + + + + + + + | | + | | | Hepatocholangiocarcinoma, metastatic, liver Renal tubule, adenoma Urinary bladder A + + + + + + + + + + + + + + + + + + | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | Urinary bladder A + + + + + + + + + + + + + + + + + + | Hepatocholangiocarcinoma, metastatic, | | | | | | | | | | X | | | | | | | | | | | | | | | | | | Systemic Lesions | Urinary bladder | A | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Multiple organs + + + + + + + + + + + + + + + + + + + | Multiple organs | + | | 50 TABLE C2 | Individual Animal Tumor Patholog | y 01 IVI | ne | IVI | ice | Ш | tile | : Z- | · r e | ar | 111 | па | iau | OII | Si | uu | y o |)1 L | 1171 | шу | IDE | HZ | en | e-r | 1P; | 10 | , bbm | |---|--------------------------| | Number of Days on Study | 7
2
9 | 7
3
0 7
3
1 | | Carcass ID Number | 2
4
6 | 0 | - | _ | 2
0
6 | 2
0
7 | 2
1
6 | 2
1
7 | 2
2
0 | 2
2
2 | 2
2
9 | 2
3
1 | 2
3
4 | 2
3
7 | 2
0
9 | 2
1
1 | 2
1
8 | 2
2
5 | 2
2
6 | 2
3
2 | 2 3 9 | 2
4
0 | 2
4
1 | 2
4
7 | 2
5
0 | Tota
Tissues
Tumor | | Respiratory System | Larynx | + | 50 | | Lung | + | 4 | | Alveolar/bronchiolar adenoma
Alveolar/bronchiolar adenoma, | X | | | | | | | | | | X | | | | | | | | | | | X | | | | | | multiple
Alveolar/bronchiolar carcinoma | | | | | | | | | | Х | | | | | | | Х | | Х | | | | | | | | | Cholangiocarcinoma, metastatic, liver | | | | | | | | | | Λ | | | | | | | Λ | | Λ | | | | | | X | | | Hemangiosarcoma, metastatic, liver | 1 | | | Hepatocellular carcinoma, metastatic, liver | | | | | | | | | | | | | | | | | | | X | | | | | | | | | Hepatocholangiocarcinoma, metastatic, liver | Nose | + | 5 | | Trachea | + | 50 | | Special Senses System | Eye | + | 4 | | Harderian gland | + | 4 | | Adenoma
Carcinoma | X | | | | | | | | X | | | | | | | | | | | | | | | | | <u>.</u> | | Urinary System | Kidney | + | 50 | | Alveolar/bronchiolar carcinoma,
metastatic, lung | Hepatocholangiocarcinoma, metastatic, liver | Renal tubule, adenoma | | | | | | | | | X | | | | | | | | | | | | | | | | | | | Urinary bladder | + | 4 | | Systemic Lesions | _ | Multiple organs | TABLE C2 | | |--|-----| | Individual Animal Tumor Pathology of Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP: 30 i | ppm | | Individual Animal Tumor Patholog | ogy of Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP: 30 ppr | |--|---| | Number of Days on Study | 4 5 5 5 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 | | | 4 | | Carcass ID Number | 4 | | Alimentary System | | | Esophagus | + | | Gallbladder | + A M I + + + A + + + + + + + + + + + + + I | | Intestine large, colon | + A A + + + + A + + + + + + + + + + + + | | ntestine large, rectum | + A I + + + + A + + + + + + + + + + + + | | Intestine large, cecum | + A A + + + + A + + + + + + + + + + + + | | Intestine small, duodenum | + A A + + + + A + + + + + + + + + + + + | | Intestine small, jejunum | + A A + + + + A + + + + + + + + + + + + | | Intestine small, ileum | + A A + + + + A + + + + + + + + + + + + | | Liver | + | | Carcinoma, metastatic, pancreas | X | | Hepatoblastoma | X X X | | Hepatocellular carcinoma | X X X X X | | Hepatocellular carcinoma, multiple | X X X X | | Hepatocellular adenoma | X X X X | | Hepatocellular adenoma, multiple Mesentery | A A + + | | Pancreas | + | | Carcinoma | X | | alivary glands | A + + + + + + + + + + + + + + + + + + + | | Stomach, forestomach | + A + + + + + + + + + + + + + + + + + + | | Squamous cell papilloma | | | stomach, glandular | + A A + + + + A + + + + + + + + + + + + | | Carcinoma | | | ooth | + | | Cardiovascular System | | | Heart | + | | Endocrine System | | | Adrenal cortex | + | | Adrenal medulla | + | | Pheochromocytoma malignant | X | | slets, pancreatic | + | | Parathyroid gland | + + M M M + I + + + + + + + + + + + + + | | Pituitary gland
Phyroid gland | + A + + + + + A + + + + + + + + + + + + | | General Body System | | | None | | | Genital System | | | Epididymis | + | | Penis | + | | reputial gland | + | | Prostate | + + + + + + + + + + + + + + + + + + + | | Seminal vesicle | + | | Testes | + | | | 7 | | |---|-----|---|----|---|---|---|--------|----|--------|---|--------|--------|---|--------|--------|--------|---|---|--------|--------|--------|--------|--------|--------|--------|------------------| | Number of Days on Study | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | | | Number of Days on Study | 0 | 0 | 3 | 3 | 3 | 3 | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3
1 | _ | 3
1 | 3 | 3 | 3 | 3
1 | 3
1 | 3
1 | 3
1 | 1 | | | | | | 0 | 0 | | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | G IDN I | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | 4 | | 4 | 4 | 4 | 4 | | 4 | 4 | | 4 | Tota | | Carcass ID Number | 2 4 | 5 | 8 | 9 | 0 | 3 | 3
4 | 8 | 4
1 | 4 | 4
5 | 4
7 | | 0 | 0
4 | 0
7 | | 0 | | 3 | 1 | | 9 | | 4
8 | Tissues
Tumor | | Alimentary System | Esophagus | + | 5 | | Gallbladder | I | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | M | + | 4 | | Intestine large, colon | + | 4 | | ntestine large, rectum | + | I | + | + | + | 4 | | ntestine large, cecum | + | 4 | | Intestine small, duodenum | + | 4 | | Intestine small, jejunum | + | 4 | | Intestine small, ileum | + | 4 | | Liver | + | 5 | | Carcinoma, metastatic, pancreas
Hepatoblastoma | | | 37 | | | | | 37 | Hepatocellular carcinoma | | | X | | | | | X | Hepatocellular carcinoma, multiple Hepatocellular adenoma | | | X | X | | | | | | | X | | X | | X | | | | X | | | | X | | | 1 | | Hepatocellular adenoma, multiple | Mesentery
Pancreas | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | + | _ | _ | _ | _ | _ | + | _ | + | 5 | | Carcinoma | Т | | | | | _ | _ | | | _ | | | | _ | | _ | _ | | | | | | | | Т | 3 | | Salivary glands | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | + | + | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 5 | | stomach, forestomach | + | 4 | | Squamous cell papilloma | 1 | | | | ' | ' | | ' | ' | ' | ' | ' | ' | | ' | ' | ' | ' | ' | ' | X | ' | | ' | ' | 7 | | tomach, glandular
Carcinoma | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | +
X | + | | + | + | + | + | 4 | | Tooth | + | + | | + | + | + | + | + | + | | + | + | + | + | + | | + | + | + | + | + | + | + | | + | 4 | | Cardiovascular System
Heart | _ | 5 | | | | | ľ | | ' | | | | ' | | | | ' | | | | | | ' | ' | | | , | | ' | 3 | | Endocrine System | Adrenal cortex | + | 5 | | Adrenal medulla | + | 5 | | Pheochromocytoma malignant | _ | | slets, pancreatic | + | 5 | | Parathyroid gland | + | + | + | + | | + | | | | | | | | | | + | | | | | | | | M | | 3 | | ituitary
gland
Thyroid gland | + | + | + | + | | + | | | | | | | | + | | | | | | | | | | M
+ | | 5 | | General Body System Jone | Genital System | Epididymis
Penis | + | 5 | | reputial gland | + | 5 | | Prostate | + | 4 | | Seminal vesicle | + | + | + | + | + | | + | | + | | | | + | | | + | | | | + | + | + | + | + | + | 5 | | Testes | | + | | | + | + | + | + | + | + | + | + | + | + | + | + | 1 | + | + | + | + | + | | | + | 5 | | TABLE | C2 | |--------------|----| |--------------|----| | | | | | | | 6 | | | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | 7 | |--|----|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|----|---|---|---|---|---|-----|-----|----------|---| | Number of Days on Study | 7 | | 7 | 7 | | 2 | 7 | 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | | | 9 | 6 | 0 | 2 | 6 | 4 | 2 | 6 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | | | 4 | 1 | 1 | 4 | 4 | | Carcass ID Number | 1 | 0 | | 4 | 0 | | | 3 | | | | 2 | - | 3 | | 3 | - | 4 | - | | | 0 | 1 | | 2 | | | 1 | | | | | | | 2 | Hematopoietic System | Bone marrow
Lymph node | + | | Lymph node, bronchial | М | М | + | + | М | + | М | + | + | + | М | + | М | + | + | + | + | М | + | + | + | М | + 1 | M | + | | Lymph node, mandibular | + | | | Lymph node, mesenteric | | | | | | | | + | | | | | | | | | | | | | | | | + | | | Carcinoma, metastatic, pancreas | X | Lymph node, mediastinal | + | A | + | M | + | M | + | + | + | + | + | + | + | M | + | M | M | + | M | + | + | M | + | + | + | | Carcinoma, metastatic, pancreas | X | Spleen | + | | | Thymus | + | A | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | M | + | + | + | + | | Integumentary System | , - | | | | | Mammary gland
Skin | 1 M
+ | | | Subcutaneous tissue, fibrous | + | _ | т | т | т | т | т | Т | т | т | - | - | т | т | т | т | т | т | т | _ | + | + | + | + | + | | histiocytoma | | | | | | | | | | | | | X | | | | | | | | | | | | | | Musculoskeletal System | Bone | + | | Nervous System | Brain | + | | Respiratory System | Larynx | + | | Lung | + | A | + | | Alveolar/bronchiolar adenoma | | | | | | | | | | | | | | | | 37 | | | | | | | | | | | Alveolar/bronchiolar carcinoma
Alveolar/bronchiolar carcinoma, | | | | | | | | | | | | | | | | X | | | | | | | | | | | multiple | 37 | Carcinoma, metastatic, pancreas
Hepatocellular carcinoma, metastatic, | X | liver | | | | | X | | X | | | | | | | | | | | | | | , | | | | | | Nose
Trachea | + | A
+ | + | + | | | | + | | | | | | | | + | + | + | + | + | + | + | + | + | + | | Special Senses System | Eye | _ | Α | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | + | + | _ | 4 | _ | _ | | arderian gland | + | + | + | + | | + | | | | | | | | | | | | | | | | + | + | + | + | | Adenoma | 1 | ' | | | ' | | | | | | | | X | | , | | | | ' | ' | X | | | ' | ' | | Jrinary System | Kidney | + | | Urinary bladder | + | | Systemic Lesions | Multiple organs | + | | Lymphoma malignant | of Ma |---|-------|---|---|--------|---|---|---|--------|--------|---|---|--------|---|---|---|---|---|---|---|---|--------|---|---|---|----|----------| | | 7 | | | Number of Days on Study | 3 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 1 | 4 | Total | | Carcass ID Number | 2 | 2 | 2 | 2 | 3 | 3 | | 3 | 4 | | | | 5 | | | | | | | | | | 1 | | 4 | Tissues/ | | Curvuss ID Tumber | 4 | 5 | | 9 | | | | | | | | | 0 | | | | | | | | | | | 7 | | Tumors | Hematopoietic System Bone marrow | + | + | + | _ | _ | + | _ | _ | _ | + | + | + | + | + | + | + | + | + | _ | + | + | _ | + | _ | + | 50 | | Lymph node | | _ | + | + | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | + | _ | т | _ | + | _ | Τ. | 1 | | Lymph node, bronchial | + | + | | + | + | Μ | + | + | + | Μ | + | + | Μ | + | Μ | + | Μ | Μ | Μ | + | + | + | Μ | + | + | 33 | | Lymph node, mandibular | M | + | + | + | + | | | | | | | | | | | | | | | | | | | + | | 35 | | Lymph node, mesenteric | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | I | + | + | + | + | + | + | + | + | + | 47 | | Carcinoma, metastatic, pancreas | 1 | | Lymph node, mediastinal | M | + | + | + | + | M | + | M | + | + | + | + | + | + | M | + | M | M | M | + | M | M | + | + | + | 33 | | Carcinoma, metastatic, pancreas | 1 | | Spleen | + | + | + | + | + | + | + | | + | | | | + | | + | + | + | + | + | + | + | + | + | + | | 50 | | Thymus | + | + | + | + | + | M | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | M | + | 43 | | Integumentary System | Mammary gland | M | | | | Skin | + | 50 | | Subcutaneous tissue, fibrous histiocytoma | 1 | | Musculoskeletal System | Bone | + | 50 | | Nervous System | Brain | + | 50 | | Dian | 30 | | Respiratory System | Larynx | + | 50 | | Lung | + | | + | 49 | | Alveolar/bronchiolar adenoma | | | | X
X | | | X | | | | X | | | | | | | | | | | | X | X | X | 6 2 | | Alveolar/bronchiolar carcinoma
Alveolar/bronchiolar carcinoma, | | | | Λ | 2 | | multiple | | | | | | | | | | | | X | | | | | | | | | | | | | | 1 | | Carcinoma, metastatic, pancreas | | | | | | | | | | | | 11 | | | | | | | | | | | | | | 1 | | Hepatocellular carcinoma, metastatic, | liver | | | X | 3 | | Nose | + | 49 | | Trachea | + | 50 | | Special Senses System | Eye | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | 47 | | Harderian gland Adenoma | + | + | + | + | + | + | + | +
X | +
X | + | + | +
X | + | + | + | + | + | + | + | + | +
X | + | + | + | + | 50
6 | | | | | | | | | | - | - | | | - | | | | | | | | | - | | | | | v | | Urinary System | | | | | | , | , | | , | | | , | | | , | j | | , | , | | | | , | | | 50 | | Kidney
Urinary bladder | + | I | + | 50
49 | | Systemic Lesions | Multiple organs | + | + | + | + | + | + | + | +
| + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Lymphoma malignant | | | X | 1 | | TABLE C2 | | |--|---------| | Individual Animal Tumor Pathology of Male Mice in the 2-Vear Inhalation Study of Divinylhenzene-HP | 100 nnm | | | 6 2 4 + A A A A A A A | 5 8 6 1 1 + + + + + + X | 3 + A + A A A A | 2 7 + A + I + A | 3
0
+
+
+
+
+
+
+
+ | 0
1
+
+
+
+
+
+
+
+ | 9
6
0
2
+
+
+
+
+
X
+
+
+ | 0
5
+
+
+
+
+
+
+
+ | 9 6 0 9 + + + + + + + + + + + + + + + + + + | 9
6
1
3
+
+
+
+
+
+
+
+
+
X | 9 ! | 6 6 6 6 6 1 2 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 9 9 1 1 - + - + - + - + - + - + | 6 2 | | 6 3 | | 6 3 | | | | | 9
6
5 | |---|---|---|---|-------------------------|--|---|---|--|--|--|---|--|---------------------------------------|---------------------------------------|---|---------------------------------------|---------------------------------------|---------------------------------------|---|---------------------------------------|---------------------------------------|---|---| | | 3 6 2 4 + A A A A A + + | 8 6 1 1 1 + + + + + + X | 6
0
3
+
A
+
A
A
A | 9 6 2 7 + A + I + A A | 3
6
3
0
+
+
+
+
+
+
+
+ | 9 6 0 1 + + + + + + + + + + + + | 9
6 0 2
+ + +
+ +
X
+ +
+ | 9 6 0 5 5 + + + + + + + + + + + + + + + + + | 9 6 0 9 + + + + + + + + + + + + + + + + + + | 9
6
1
3
+
+
+
+
+
+
+
+
+
X | 9 ! | 9 | 9 9 1 1 - + + - + + - + + - + + | 9 6 2 5 5 + + + + + + + + + + + + | 9 6 2 9 + + + + + + + + + + | 9
6
3 | 9
6
3 | 9
6
3 | 9
6
4 | 6 4 | 6 4 | 9 6 4 7 + + + + + + + + + | 9
6
5 | | | 6 2 4 + A A A A A A A + + | 6
1
1
+
+
+
+
+
+
+
X | 6 0 3 + A + A A A A | 6 2 7 + A + I + A A | 6 3 0 | 6 0 1 + + + + + + + + + + + + + | 6 0 2 + + + + + X + + + + + + + + + + + + + | 6 0 5 + + + + + + + + + + + + + + + + + + | 6 0 9 + + + + + + + + + + + + + + + + + + | 6 1 3 + + + + + + + + + + X + + X | 6 1 7 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 6 6 6
1 2 8 0
+ + + +
+ + +
+ + +
+ + + | - + + - + + - + | 6 2 5 + + + + + + + + + + + + | 6 2 9 + + + + + + + + + + + + + + + + + + | 6 3 | 6 3 | 6 3 | 6 4 | 6 4 | 6 4 | 6 4 7 + + + + + + + + + + | 6 5 | | - | 2
4
+ A
A
A
A
A
A
+ | 1
1
+ + +
+ +
+ +
X | 0
3
+ A
+ A
A
A | 2 7 + A + I + A A | 3
0
+
+
+
+
+
+
+
+ | 0
1
+
+
+
+
+
+
+
+ | 0
2
+
+
+
+
+
+
X
+
+
+ | 0
5
+
+
+
+
+
+
+
+ | 0
9
+
+
+
+
+
+
+
+ | 1 3 + + + + + + + + + + X + + X | + | 1 2 8 0 | - + - + - + - + | 2 5 + + + + + + + + + + + | 2 9 + + + + + + + + + + + + + + + + + + | 3 | 3 | 3 | 4 | 4 | 4 | + | 5 | | | + A A A A A A + | 1 + + + + + + + X | 3 + A + A A A A | 7 + A + I + A A A | + | + + + + + + + + + | + + + + + X + + + + + + + + + + + + + + | +
+
+
+
+
+
+
+ | 9
+ +
+ +
+ +
+ +
+ | + + + + + + + + X + + X | + + + + + + + + + + + + + + + + + + + | + | - + + - + + - + | +
+
+
+
+ | 9 + + + + + + + + | | | | | | | 7
+ +
+ +
+ +
+ | | | - | A
A
A
A
+ | +
+
+
+
X | +
A
A
A | +
I
+
A
A | + + + + + | +
+
+
+
+ | +
+
+
X
+
+
+ | + + + + + + + | + + + + + + + | +
+
+
+
+
X
+ | + - + - + - + - + - + - + - + - + - + - | + | + + + + + + | + + + + + + + + + | + + + + + + + + + + + | + + + + + + + + + + | +
+
+
+
+
+
+ | + + + + + + + + + + + + + + + + + + + | + + + + + + + + + + | + + + + + + + + + + | +
+
+
+
+
+ | +
+
+
+
+
+ | + + + + + + + + + + | | - | A
A
A
A
+ | +
+
+
+
X | +
A
A
A | +
I
+
A
A | + + + + + | +
+
+
+
+ | +
+
+
X
+
+
+ | + + + + + + + | + + + + + + + | +
+
+
+
+
X
+ | + - + - + - + - + - + - + - + - + - + - | + | + + + + + + | + + + + + + + + + | + + + + + + + + + + | + + + + + + + + + | +
+
+
+
+
+
+
+ | +
+
+
+
+
+
+ | +
+
+
+
+
+
+ | + + + + + + + + + | +
+
+
+
+
+ | +
+
+
+
+
+ | + | | - | A
A
A
A
+ | +
+
+
+
X | +
A
A
A | +
I
+
A
A | + + + + + | +
+
+
+
+ | +
+
+
X
+
+
+ | + + + + + + + | + + + + + + + | +
+
+
+
+
X
+ | + - + - + - + - + - + - + - + - + - + - | + | + + + + + + | + + + + + + + + + | + + + + + + + + + + + | + + + + + + + + + + | + + + + + + + + + + + | + + + + + + + + + + + | + + + + + + + + + + + + | + + + + + + + + | + + + + + + + + | + + + + + + + + | + + + + + + + + + + + | | - | A
A
A
A
+ | +
+
+
+
X | +
A
A
A | +
I
+
A
A | + + + + + | +
+
+
+
+ | +
+
+
X
+
+
+ | + + + + + + + | + + + + + + + | +
+
+
+
+
X
+ | + - + - + - + - + - + - + - + - + - + - | + | + + + + + + | + + + + + + + | + + + + + + + + | + + + + + + + + | + + + + + + + + + | + + + + + + + + | + + + + + + + + + | + + + + + + + | + + + + + + + | + + + + + + + | + + + + + + + + + | | - | A
A
A
A | +
+
+
+
X | A
A
A | I
+
A
A | + + + + | + + + + + | +
+
X
+
+
+ | + + + + + + | + + + + | +
+
+
X
+ | + - + - + - + - + - + - + - + - + - + - | + + + + + + + + + | + | + + + + + + | + + + + + + + | + + + + + + | + + + + + + + | + + + + + + + | +++++++++++++++++++++++++++++++++++++++ | + + + + + + | + + + + + + | + + + + + + | +
+
+
+
+ | | - | A
A
A
+ | +
+
X | A
A
A | +
A
A | + + + | + + + + | +
X
+
+
+ | + + + + + | + + + + | +
+
+
X
+ | + - + - + - + - + - + - + - + - + - + - | + + + + + + + + + | + | + + + + + | + + + + + + | + + + + + + | + + + + + + | + + + + + + | + + + + + + | + + + + + | + + + + + | + + + + + | +
+
+
+ | | - | A
A
+ | +
+
X | A
A | A
A | + | + + + | X
+
+
+ | + + + + + | + + + | +
+
X
+ | + - + - | + + | + | + + + + | + + + + + | + + + + + | + + + + + | + + + + + | + + + + + | + + + + | + + + + | + + + + | +
+
+ | | - | A
A
+ | +
X | A | A | + | + | + + + + | + + + | + | + X
+ X | + - | + + | + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + + | + + + + | + + + + | + + + + | + + + + | | - | A
A
+ | +
X | A | A | + | + | + + + | + + + | + | + X
+ X | + - | + + | + | + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + | + + + | + + + | + + + | | - | A
+ | X | | | | + | + | + | + | +
X
+ | + - | + + | + | + + + | + + + | + + + | + + + | + + + | + + + | + | + | + | + | | - | A
+ | | A
+ | A
+ | + | + | + | + | | X
+ | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | | - | + | + | A
+ | A
+ | + | + | + | + | | X
+ | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | | | +
X | + | + | + | + | + | | | + | + | | + + | + | + | + | + | + | + | + | | | | | | | +
X | + | + | + | + | + | | | + | | | + + | + | + | + | + | + | + | + | | | | | | | X | | | | | | | X | | | X | | | | | | | | | + | + | + | + | | | | | | | | | v | | | | | | | X | | X | | | | | | | | | | | | | | | | Λ | | | X | 2 | X X | | | | | | | | | | | X | X | | | | | | X | + | | | | | | | | | | | + | | | | | | | | | + | | - | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | | - | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | | - | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | | | | | X | - | Α | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | | | | | + | + | + | + | + | | + | + | | + | + | | + | + | + | + | + | + | + | - | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | | | | | | Х | - | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + |
+ | + | + | + | + | + | | - | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | | - | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | | - | + | + | + | | | | | + | | | | | | + | + | | | | | | M | | | | | + | + | + | | | | | | | | | | | + | + | | | + | + | + | + | | | | - | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | | | | + + + + + + | + +
+ +
+ +
+ + | + + +
+ + +
+ + + | + + + +
+ + + +
+ + + M
+ + + + | + + + + +
+ + + + +
+ + + + +
+ + + M M
+ + + + | + + + + + + + + + + + + + + + + + + + | + + + + + + + + + + + + + + + + + + + | + + + + + + + + + + + + + + + + + + + | + + + + + + + + + + + + + + + + + + + | + + + + + + + + + + + + + + + + + + + | + + + + + + + + + + + + + + + + + + + | + + + + + + + + + + + + + + + + + + + | + + + + + + + + + + + + + + + + + + + | + + + + + + + + + + + + + + + + + + + | + + + + + + + + + + + + + + + + + + + | + + + + + + + + + + + + + + + + + + + | + + + + + + + + + + + + + + + + + + + | + + + + + + + + + + + + + + + + + + + | + + + + + + + + + + + + + + + + + + + | + + + + + + + + + + + + + + + + + + + | + + + + + + + + + + + + + + + + + + + | + + + + + + + + + + + + + + + + + + + | | N. I. CD. Ct. I | 7 | , | 7 | | |--|-----|---|---|-----|---|---|---|--------|--------|---|---|--------|---|--------|---|--------|--------|---|---|--------|---|--------|---|---|--------|------------------| | Number of Days on Study | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 3
0 | 3
0 | 0 | 0 | 3
0 | 0 | 3
0 | 0 | 3
0 | 3
0 | 0 | 1 | 3
1 | 1 | 3
1 | 1 | 1 | 3
1 | | | | 6 | Tota | | Carcass ID Number | 0 4 | 0 | 0 | 1 0 | | 1 | 1 | 2 | 3 | 3 | 3 | 3 | 3 | | 4 | 4 | 4 | 4 | 0 | 1 | 2 | 2 | 2 | 3 | 4 | Tissues
Tumor | | Alimentary System | Esophagus | + | 50 | | Gallbladder | + | + | + | + | + | I | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | 4: | | Intestine large, colon | + | I | + | + | + | 48 | | Intestine large, rectum | + | 4′ | | Intestine large, cecum | + | 4 | | Leiomyoma | Intestine small, duodenum | + | 4 | | Intestine small, jejunum | + | + | + | + | + | + | + | + | + | + | + | + | + | | | + | | + | + | + | + | + | + | + | + | 4′ | | Carcinoma | | | | | X | | | | | | | | | | | | X | | | | | | | | X | | | Intestine small, ileum Carcinoma | + | 4 | | Liver | + | 50 | | Hepatocellular carcinoma
Hepatocellular carcinoma, multiple | | | | | | | | | | | | X | X | | X | | X | | | | | | X | | | | | Hepatocellular adenoma | | Х | X | | | | X | | X | | | | | | | | | X | Х | | | | | | | 1 | | Hepatocellular adenoma, multiple
Histiocytic sarcoma | Mesentery | | | | | | + | | | | | | | | | | | | | | | | + | | | | : | | Pancreas | + | 50 | | Salivary glands | + | 50 | | Stomach, forestomach | + | 50 | | Squamous cell carcinoma | Squamous cell papilloma | X | | | | | | | | Stomach, glandular | + | 49 | | Tooth | | + | + | + | + | + | + | | + | + | + | | | + | + | + | + | + | | + | + | + | | + | + | 3: | | Cardiovascular System | Heart | + | 50 | | Alveolar/bronchiolar carcinoma, metastatic, lung | Endocrine System | Adrenal cortex | + | 50 | | Adrenal medulla | + | 50 | | Islets, pancreatic | + | + | + | + | + | + | + | | | | + | | | + | | | | + | | + | + | + | + | + | + | 50 | | Parathyroid gland | + | + | + | + | | M | | | | | | | | + | | | | | | | + | + | M | | + | 3: | | Pituitary gland | + | + | + | + | + | | + | | | | | | | + | | | | | | | + | + | + | | + | 40 | | Thyroid gland | + | 50 | | General Body System None | TABLE | C2 | |--------------|----| |--------------|----| | Individual Animal Tumor Patholog | ,, 01 1.10 | - 11 | |---|------------|--------|--------|--------|--------|--------|---|---|--------|--------|---|---|--------|--------|---|--------|---|---|---|---|--------|--------|--------|--------|------| | | | | 5 | 5 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | Number of Days on Study | 5 | 3 | 5 | 9 | 6
9 | 8 | 1 | 2 | 2 | 2 | 2 | 9 | 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | 2 | 3 | 8 | 8 | 9 | 3 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | | 6 | 6 | 6 | 6 | | | | | 6 | | | | | | | | 6 | | 6 | 6 | | 6 | | 6 | | | Carcass ID Number | 1
9 | 2
4 | 1 | 0 | | | | | 0
5 | | | | | | | 2
5 | | 2 | | | | 4 | | 4
7 | | | Conital System | Genital System
Epididymis | + | | Histiocytic sarcoma | | | | X | Preputial gland | + | | Prostate | + | Α | + | | Seminal vesicle | + | A | + | | Festes Interstitial cell, adenoma | +
X | + | + | + | + | | Hematopoietic System | Bone marrow | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | | Lymph node, bronchial | + | M | | | | | | | M | | | | | | | | | | | | | | + | + | | | Lymph node, mandibular | + | + | + | | | | | | + | | | | | | M | | | + | | | | | | + | | | Lymph node, mesenteric Lymph node, mediastinal | + | +
M | т
Т | + | | + | | | +
M | +
M | | + | + | + | + | + | + | | + | | + | +
M | +
M | +
M | | | Spleen | + | 1VI | + | | | | | | + | | | | + | | + | | | + | | | + | + | | + | | | Squamous cell carcinoma, metastatic, stomach, forestomach | | ' | | X | ' | ' | | | ' | ' | | | | | ' | ' | ' | | | ' | ' | | | | | | Chymus | + | + | + | | M | + | + | + | + | + | M | M | + | + | + | + | + | + | + | + | + | + | + | + | + | | ntegumentary System | Mammary gland | | | | | | | | | M | | | | | | | | | | | | | | | | | | Skin | + | | Subcutaneous tissue, hemangioma | Musculoskeletal System | Bone | + | | Nervous System | Brain | + | | Respiratory System | Larynx | + | | Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, | + | A | + | +
X | + | +
X | + | + | +
X | +
X | + | + | +
X | +
X | + | + | + | + | + | + | +
X | +
X | + | +
X | + | | multiple | Alveolar/bronchiolar carcinoma Alveolar/bronchiolar carcinoma, | | | | | X | X | | | | | | X | X | | | | | | | | | | | X | | | multiple
Fibroma | X | | | | | | | Hepatocellular carcinoma, metastatic, liver | | | | | | | | | | | | | | | | X | | | | | | | | | | | Bronchus, adenoma | Nose | +
| + | + | | Trachea | + | Α | + | | Individual Animal Tumor Pathology | of Ma | le . | Mi | ce | in 1 | the | 2- | Ye | ar | In | ha | lati | on | St | ud | y o | 1 L | IVI | ny | Ibe | enz | en | e-I | IP: | 100 ppn | 1 | |---|--------|--------|--------|----|------|-----|-----|----|----|----|----|--------|----|----|----|-----|--------|--------|----|-----|-----|--------|-----|-----|---------|--------------------| | | 7 | | | Number of Days on Study | 3 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Courses ID November | | 6 | | 6 | 6 | | | | | | | | | | | | | | | | | | | 6 | | Total | | Carcass ID Number | 0
4 | 0
6 | 0
7 | 0 | 2 | 1 | 1 5 | | | | | 3
7 | | 4 | 4 | | 4
8 | 4
9 | | 1 | | 2
6 | | 9 | 4
6 | Tissues/
Tumors | Genital System | Epididymis | + | 50 | | Histiocytic sarcoma | 1 | | Preputial gland | + | 50 | | Prostate | + | 49 | | Seminal vesicle | + | | + | 49 | | Testes Interstitial cell, adenoma | + | 50 | | Hematopoietic System | Bone marrow | + | 50 | | Lymph node, bronchial | + | Μ | + | + | + | + | + | + | + | M | + | M | Μ | + | + | + | + | + | + | + | + | + | Μ | + | + | 37 | | Lymph node, mandibular | M | M | + | + | + | + | + | + | + | M | + | M | M | + | + | + | + | + | + | + | + | M | + | M | + | 38 | | Lymph node, mesenteric | + | 50 | | Lymph node, mediastinal | + | M | Μ | M | M | + | M | + | + | M | + | + | + | M | + | + | + | + | M | + | Μ | M | + | + | + | 29 | | Spleen | + | 50 | | Squamous cell carcinoma, metastatic, stomach, forestomach | 1 | | Thymus | + | + | + | + | I | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | 44 | | Integumentary System | Mammary gland | M | | | Skin | + | 50 | | Subcutaneous tissue, hemangioma | | | | | | | | | X | | | | | | | | | | | | | | | | | 1 | | Musculoskeletal System | Bone | + | 50 | | Nervous System | Brain | + | 50 | | Respiratory System | Larynx | + | 50 | | Lung | + | 49 | | Alveolar/bronchiolar adenoma | | | | | | | | | | | X | | | | | | Х | | | | X | | X | | | 13 | | Alveolar/bronchiolar adenoma, | multiple | | | X | | | | | | | | | | | | | | | | | | | X | | | | 2 | | Alveolar/bronchiolar carcinoma | | | | | | | | | | | | | | X | | X | X | | | | | | | | | 8 | | Alveolar/bronchiolar carcinoma, multiple | 1 | | Fibroma | X | | 1 | | Hepatocellular carcinoma, metastatic, liver | 1 | | Bronchus, adenoma | | | | | | X | 1 | | Nose | + | 50 | | Trachea | 1 | - 1 | 49 | | TABLE C2 Individual Animal Tumor Patho | ology of Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP: 100 ppm | |---|---| | N. J. AD. G. J. | 4 5 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | Number of Days on Study | 5 3 5 9 6 8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | 6 | | Carcass ID Number | 1 2 1 0 2 3 0 0 0 0 1 1 1 2 2 2 2 3 3 3 4 4 4 4 5 9 4 1 3 7 0 1 2 5 9 3 7 8 0 1 5 9 2 4 6 3 4 5 7 0 | | pecial Senses System | | | iye
Iarderian gland
Adenoma | + + + + + + + + + + + + + + + + + + + | | Jrinary System | | | Kidney
Jrinary bladder | + + + + + + + + + + + + + + + + + + + | | Systemic Lesions Multiple organs Histiocytic sarcoma Lymphoma malignant | + + + + + + + + + + + + + + + + + + + | TABLE C2 | Individual Animal Tumor Patho | ology of M | ale | Mi | ice | in 1 | the | 2- | Ye | ar | In | ha | lat | ion | St | ud | y o | fΙ |)iv i | iny | lbe | nz | en | e-H | IP: | 100 | 0 ppm | |---|-------------|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------------------------| | Number of Days on Study | 7
3
0 | _ | 7
3
0 7
3
1 | | Carcass ID Number | 60 | - | - | 6
1
0 | 6
1
2 | 6
1
4 | 6
1
5 | 6
2
3 | 6
3
1 | 6 3 3 | 6
3
5 | 6
3
7 | 6
3
8 | 6
4
0 | 6
4
1 | 6
4
2 | 6
4
8 | 6
4
9 | 6
0
8 | 6
1
6 | 6
2
2 | 6
2
6 | 6
2
8 | 6
3
9 | 4 | Total
Tissues/
Tumors | | Special Senses System Eye Harderian gland Adenoma | ++ | ++ | +
+
X | + | +++ | +
+
X | + | ++ | + | +++ | + | ++ | + | + | +++ | ++ | + | +++ | +
+
X | + + | + + | ++ | +
+
X | + + | +++ | 50
50
7 | | Urinary System
Kidney
Urinary bladder | + | + + | + | + | ++ | ++ | + | + | + | + | + | + | + | + | ++ | + | + | + | ++ | + | + | ++ | ++ | ++ | ++ | 50
49 | | Systemic Lesions Multiple organs Histiocytic sarcoma Lymphoma malignant | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50
1
1 | TABLE C3 Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | Ch | amber Control | 10 ppm | 30 ppm | 100 ppm | |---|---------------|-------------|-------------------------|-------------| | Adrenal Cortex: Adenoma | | | | | | Overall rate | 3/49 (6%) | 1/49 (2%) | 0/50 (0%) | 0/50 (0%) | | Adjusted rate b | 6.6% | 2.2% | 0.0% | 0.0% | | Terminal rate ^c | 3/41 (7%) | 1/38 (3%) | 0/42 (0%) | 0/43 (0%) | | First incidence (days) | 729 (T) | 729 (T) | e ` ´ | _ ` ´ | | Poly-3 test ^d | P=0.104N | P=0.305N | P=0.115N | P=0.112N | | Harderian Gland: Adenoma | | | | | | Overall rate | 5/50 (10%) | 3/50 (6%) | 6/50 (12%) | 7/50 (14%) | | Adjusted rate | 10.9% | 6.5% | 12.9% | 14.8% | | Terminal rate | 5/41 (12%) | 2/38 (5%) | 6/42 (14%) | 7/43 (16%) | | First incidence (days) | 729 (T) | 711 | 729 (T) | 729 (T) | | Poly-3 test | P=0.221 | P=0.353N | P=0.511 | P=0.402 | | Harderian Gland: Adenoma or Carcinoma | | | | | | Overall rate | 6/50 (12%) | 4/50 (8%) | 6/50 (12%) | 7/50 (14%) | | Adjusted rate | 13.1% | 8.7% | 12.9% | 14.8% | | Terminal rate | 6/41 (15%) | 3/38 (8%) | 6/42 (14%) | 7/43 (16%) | | First incidence (days) | 729 (T) | 711 | 729 (T) | 729 (T) | | Poly-3 test | P=0.347 | P=0.365N | P=0.610N | P=0.525 | | Small Intestine (Jejunum): Carcinoma | | | | | | Overall rate | 3/50 (6%) | 0/50 (0%) | 0/50 (0%) | 4/50 (8%) | | Adjusted rate | 6.5% | 0.0% | 0.0% | 8.4% | | Terminal rate | 2/41 (5%) | 0/38 (0%) | 0/42 (0%) | 3/43 (7%) | | First incidence (days) | 609 | _ | _ | 558 | | Poly-3 test | P=0.122 | P=0.119N | P=0.118N | P=0.519 | | Small Intestine (Duodenum, Ileum, or Jejunum) | | | | | | Overall rate | 3/50 (6%) | 1/50 (2%) | 0/50 (0%) | 5/50 (10%) | | Adjusted rate | 6.5% | 2.2% | 0.0% | 10.5% | | Terminal rate | 2/41 (5%) | 0/38 (0%) | 0/42 (0%) | 4/43 (9%) | | First incidence (days) | 609 | 641 | | 558 | | Poly-3 test | P=0.084 | P=0.304N | P=0.118N | P=0.376 | | Liver: Hemangiosarcoma | | | | | | Overall rate | 3/50 (6%) | 1/50 (2%) | 0/50 (0%) | 0/50 (0%) | | Adjusted rate | 6.5% | 2.2% | 0.0% | 0.0% | | Terminal rate | 1/41 (2%) | 0/38 (0%) | 0/42 (0%) | 0/43 (0%) | | First incidence (days) | 609 | 716 | _ | _ | | Poly-3 test | P=0.106N
 P=0.308N | P=0.119N | P=0.116N | | Liver: Hepatocellular Adenoma | | | | | | Overall rate | 22/50 (44%) | 17/50 (34%) | 12/50 (24%) | 12/50 (24%) | | Adjusted rate | 47.1% | 35.8% | 25.2% | 25.4% | | Terminal rate | 20/41 (49%) | 13/38 (34%) | 9/42 (21%) | 12/43 (28%) | | First incidence (days) | 456 | 543 | 526 | 729 (T) | | Poly-3 test | P=0.039N | P=0.181N | P=0.020N | P=0.022N | | Liver: Hepatocellular Carcinoma | | | f | | | Overall rate | 13/50 (26%) | 11/50 (22%) | 9/50 (18%) ^f | 10/50 (20%) | | Adjusted rate | 27.2% | 23.1% | 18.4% | 20.9% | | Terminal rate | 8/41 (20%) | 5/38 (13%) | 4/42 (10%) | 9/43 (21%) | | First incidence (days) | 565 | 600 | 479 | 533 | | Poly-3 test | P=0.347N | P=0.411N | P=0.216N | P=0.317N | TABLE C3 Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |---|-------------------|------------------|--------------------------|----------------------| | Liver: Hepatocellular Adenoma or Carci | noma | | | | | Overall rate | 30/50 (60%) | 26/50 (52%) | 20/50 (40%) ^f | 22/50 (44%) | | Adjusted rate | 61.8% | 53.2% | 40.0% | 46.0% | | Terminal rate | 24/41 (59%) | 17/38 (45%) | 12/42 (29%) | 21/43 (49%) | | First incidence (days) | 456 | 543 | 479 | 533 | | Poly-3 test | P=0.131N | P=0.256N | P=0.023N | P=0.086N | | Lung: Alveolar/bronchiolar Adenoma | | | | | | Overall rate | 12/49 (24%) | 6/49 (12%) | 6/49 (12%) | 15/49 (31%) | | Adjusted rate | 26.1% | 13.2% | 13.0% | 31.6% | | Terminal rate | 11/41 (27%) | 6/38 (16%) | 6/42 (14%) | 13/43 (30%) | | First incidence (days) | 536 | 729 (T) | 729 (T) | 598 | | Poly-3 test | P=0.067 | P=0.097N | P=0.093N | P=0.358 | | Lung: Alveolar/bronchiolar Carcinoma | | | | | | Overall rate | 5/49 (10%) | 4/49 (8%) | 3/49 (6%) | 9/49 (18%) | | Adjusted rate | 11.0% | 8.8% | 6.5% | 19.1% | | Terminal rate | 5/41 (12%) | 3/38 (8%) | 3/42 (7%) | 7/43 (16%) | | First incidence (days) | 729 (T) | 711 | 729 (T) | 669 | | Poly-3 test | P=0.069 | P=0.498N | P=0.349N | P=0.214 | | Lung: Alveolar/bronchiolar Adenoma or | | 10/10/(2007) | 0/40 /4 (0/) | 20/40//410/ | | Overall rate | 16/49 (33%) | 10/49 (20%) | 8/49 (16%) | 20/49 (41%) | | Adjusted rate | 34.7% | 21.9% | 17.4% | 42.0% | | Ferminal rate | 15/41 (37%) | 9/38 (24%) | 8/42 (19%) | 17/43 (40%) | | First incidence (days) | 536 | 711
P. 0.120N | 729 (T) | 598
P. 0.206 | | Poly-3 test | P=0.053 | P=0.128N | P=0.046N | P=0.306 | | Skin (Subcutaneous Tissue): Fibrous His | - | 1/50 (20() | 1/50/00/ | 0/50 (00/) | | Overall rate | 3/50 (6%) | 1/50 (2%) | 1/50 (2%) | 0/50 (0%) | | Adjusted rate | 6.5% | 2.2% | 2.2% | 0.0% | | Ferminal rate | 2/41 (5%) | 0/38 (0%) | 1/42 (2%) | 0/43 (0%) | | First incidence (days) | 536 | 697 | 729 (T) | —
D. 0.115N | | Poly-3 test | P=0.120N | P=0.307N | P=0.304N | P=0.115N | | All Organs: Hemangiosarcoma | (150 (100 () | 2/52 /42/ | 0/50 (00/) | 0/50 (00/) | | Overall rate | 6/50 (12%) | 2/50 (4%) | 0/50 (0%) | 0/50 (0%) | | Adjusted rate | 12.9% | 4.4% | 0.0% | 0.0% | | Terminal rate | 4/41 (10%) | 1/38 (3%) | 0/42 (0%) | 0/43 (0%) | | First incidence (days) | 609
P=0.01(2) | 716
P=0.12(N) | —
D=0.015N | —
D—0.014NI | | Poly-3 test | P=0.016N | P=0.136N | P=0.015N | P=0.014N | | All Organs: Hemangioma or Hemangiosa | | 4/50 (00/) | 0/50 (00/) | 1/50 (20/) | | Overall rate | 6/50 (12%) | 4/50 (8%) | 0/50 (0%) | 1/50 (2%) | | Adjusted rate
Ferminal rate | 12.9% | 8.7% | 0.0% | 2.1% | | | 4/41 (10%)
609 | 3/38 (8%) | 0/42 (0%) | 1/43 (2%)
729 (T) | | First incidence (days) Poly-3 test | P=0.043N | 716
P=0.375N | P=0.015N | P=0.053N | | All Organs: Benign Neoplasms | | | | | | Overall rate | 35/50 (70%) | 24/50 (48%) | 21/50 (42%) | 27/50 (54%) | | Adjusted rate | 74.0% | 50.4% | 44.2% | 56.5% | | Ferminal rate | 32/41 (78%) | 19/38 (50%) | 18/42 (43%) | 25/43 (58%) | | First incidence (days) | 456 | 543 | 526 | 598 | | Poly-3 test | P=0.279N | P=0.012N | P=0.002N | P=0.052N | | - y | | | | | TABLE C3 Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |-----------------------------------|------------------------|-------------|-------------|-------------| | All Organs: Malignant Neoplasms | | | | | | Overall rate | 26/50 (52%) | 21/50 (42%) | 14/50 (28%) | 23/50 (46%) | | Adjusted rate | 53.5% | 43.0% | 28.7% | 46.8% | | Terminal rate | 19/41 (46%) | 11/38 (29%) | 9/42 (21%) | 18/43 (42%) | | First incidence (days) | 536 | 338 | 479 | 533 | | Poly-3 test | P=0.520N | P=0.202N | P=0.009N | P=0.322N | | All Organs: Benign or Malignant I | Neoplasms | | | | | Overall rate | 43/50 (86%) | 38/50 (76%) | 29/50 (58%) | 41/50 (82%) | | Adjusted rate | 87.1% | 76.0% | 58.0% | 83.3% | | Terminal rate | 35/41 (85%) | 26/38 (68%) | 21/42 (50%) | 36/43 (84%) | | First incidence (days) | 456 | 338 | 479 | 533 | | Poly-3 test | P=0.409 | P=0.120N | P<0.001N | P=0.403N | ## (T)Terminal sacrifice Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, liver, and lung; for other tissues, denominator is number of animals necropsied. Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality Observed incidence at terminal kill Beneath the chamber control incidence is the P value associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the chamber controls and that exposed group. The Poly-3 test accounts for the differential mortality in animals that do not reach terminal sacrifice. A negative trend or a lower incidence in an exposed group is indicated by N. Not applicable; no neoplasms in animal group Two animals with hepatocellular carcinoma also had hepatoblastoma. TABLE C4 Historical Incidence of Alveolar/bronchiolar Neoplasms in Control Male B6C3F₁ Mice^a | | Incidence in Controls | | | | |--|-----------------------|------------------------------|--------------------|--| | Study | Adenoma | noma Carcinoma Ade
or Car | | | | Historical Incidence: Inhalation Studies | | | | | | Decalin | 8/50 | 8/50 | 15/50 | | | Divinylbenzene | 12/49 | 5/49 | 16/49 | | | Indium phosphide | 13/50 | 6/50 | 18/50 | | | Methyl isobutyl ketone | 9/50 | 5/50 | 14/50 | | | Propylene glycol mono-t-butyl ether | 13/50 | 6/50 | 17/50 | | | Stoddard solvent IIC | 6/50 | 7/50 | 13/50 | | | anadium pentoxide | 13/50 | 12/50 | 22/50 | | | Overall Historical Incidence: Inhalation Studies | | | | | | Total (%) | 74/349 (21.2%) | 49/349 (14.0%) | 115/349 (33.0%) | | | Mean ± standard deviation | $21.2\% \pm 5.8\%$ | $14.0\% \pm 4.9\%$ | $33.0\% \pm 6.0\%$ | | | Range | 12%-26% | 10%-24% | 26%-44% | | | Overall Historical Incidence: All Routes | | | | | | Total (%) | 258/1,507 (17.1%) | 151/1,507 (10.0%) | 385/1,507 (25.6%) | | | Mean ± standard deviation | $16.7\% \pm 7.3\%$ | $9.9\% \pm 5.0\%$ | $25.1\% \pm 9.4\%$ | | | Range | 4%-28% | 4%-24% | 12%-44% | | ^a Data as of January 28, 2005 TABLE C5 Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP^a | | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |--------------------------------------|------------------------|-------------|---------------|--------------| | Disposition Summary | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Early deaths | 30 | 30 | 50 | 30 | | Moribund | 7 | 6 | 5 | 4 | | Natural deaths | 2 | 6 | 3 | 3 | | Survivors | 2 | U | 3 | 3 | | Terminal sacrifice | 41 | 38 | 42 | 43 | | Terrimiar sacrifice | 41 | 36 | 42 | 43 | | Animals examined microscopically | 50 | 50 | 50 | 50 | | Alimentary System | | | | | | Liver | (50) | (50) | (50) | (50) | | Angiectasis | . / | ` ' | * / | 1 (2%) | | Basophilic focus | 3 (6%) | 6 (12%) | 7 (14%) | 4 (8%) | | Clear cell focus | 9 (18%) | 11 (22%) | 6 (12%) | 5 (10%) | | Eosinophilic focus | 8 (16%) | 7 (14%) | - () | 2 (4%) | | Fatty change | (,-) | 2 (4%) | 1 (2%) | = (· / * /) | | Infarct | 2 (4%) | = (· / • / | 1 (2%) | | | Inflammation, granulomatous | 1 (2%) | | - (=, +) | | | Mineralization | 1 (2%) | | | | | Mixed cell focus | 2 (4%) | 1 (2%) | 2 (4%) | 1 (2%) | | Necrosis | 1 (2%) | 2 (4%) | 2 (4%) | 2 (4%) | | Tension lipidosis | 2 (4%) | 1 (2%) | 2 (4%) | 1 (2%) | | Vacuolization cytoplasmic, focal | 2 (4%) | - (=/*) | _ (· · · ·) | - (=,*) | | Mesentery | (11) | (4) | (4) | (5) | | Fat, necrosis | 10 (91%) | 4 (100%) | 4 (100%) | 5 (100%) | | Pancreas | (49) | (48) | (50) | (50) | | Duct, cyst | 2 (4%) | (14) | () | () | | Stomach, forestomach | (49) | (50) | (49) | (50) | | Hyperplasia, squamous | 1 (2%) | 4 (8%) | 2 (4%) | 4 (8%) | | Inflammation | 1 (2/0) | 1 (2%) | = (170) | . (0,0) | | Inflammation, acute | | 2 (4%) | | 1 (2%) | | Inflammation, chronic active | 1 (2%) | 1 (2%) | | 3 (6%) | | Mineralization | 1 (2/0) | 1 (270) | | 1 (2%) | | Ulcer | | 2 (4%) | 1 (2%) | 1 (2%) | | Stomach, glandular | (48) | (48) | (47) | (49) | | Inflammation, acute | (10) | 1 (2%) | (11) | (12) | | Mineralization | | 1 (2%) | | | | Necrosis | | 1 (2%) | | 1 (2%) | | Footh | (41) | (43) | (41) | (35) | | Incisor, dysplasia | 41 (100%) | 43 (100%) | 41 (100%) | 35 (100%) | | incisoi, dyspiasia | 41 (10070) | 43 (10070) | 41 (10070) | 33 (10070) | | Cardiovascular System | (70) | (40) | (50) | (50) | | Heart | (50) | (49) | (50) | (50) | | Cardiomyopathy | 14 (28%) | 5 (10%) | 5 (10%) | 5 (10%) | | Mineralization | 1 (2%) | 1 (2%) | | 1 (2%) | | Artery, inflammation, chronic active | 1 (2%) | | | | ^a Number of animals examined microscopically at the site and the number of animals with lesion TABLE C5 Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | |
Chamber Control | 10 ppm | 30 ppm | 100 ppm | |--|------------------------|----------|----------|----------| | Endocrine System | | | | | | Adrenal cortex | (49) | (49) | (50) | (50) | | Hyperplasia | 9 (18%) | 10 (20%) | 6 (12%) | 5 (10%) | | Hypertrophy | 24 (49%) | 25 (51%) | 26 (52%) | 24 (48%) | | Adrenal medulla | (49) | (49) | (50) | (50) | | Hyperplasia | 1 (2%) | 2 (4%) | · / | 2 (4%) | | Parathyroid gland | (35) | (39) | (36) | (35) | | Hyperplasia | | ` ′ | 1 (3%) | | | Pituitary gland | (48) | (47) | (47) | (46) | | Cyst | | 1 (2%) | | | | Pars distalis, hyperplasia | 2 (4%) | 1 (2%) | 2 (4%) | 1 (2%) | | Thyroid gland | (49) | (49) | (50) | (50) | | Follicular cell, hyperplasia | | 2 (4%) | 1 (2%) | | | General Body System None | | | | | | Genital System | | | | | | Epididymis | (50) | (50) | (50) | (50) | | Granuloma sperm | 1 (2%) | 2 (4%) | V7 | (· ·) | | Penis | () | () | (1) | | | Inflammation, acute | | | 1 (100%) | | | Preputial gland | (50) | (50) | (50) | (50) | | Ectasia | 1 (2%) | 3 (6%) | 2 (4%) | 1 (2%) | | Inflammation, chronic active | ` ′ | ` ' | 2 (4%) | . / | | Seminal vesicle | (49) | (48) | (50) | (49) | | Inflammation, chronic | | 1 (2%) | | | | Testes | (50) | (50) | (50) | (50) | | Atrophy | 2 (4%) | | | | | Mineralization | 1 (2%) | | | | | Interstitial cell, hyperplasia | | | 1 (2%) | | | Hematopoietic System | | | | | | Bone marrow | (50) | (48) | (50) | (50) | | Necrosis | 1 (2%) | (10) | (50) | (30) | | Spleen | (49) | (48) | (50) | (50) | | Hematopoietic cell proliferation | 1 (2%) | (10) | 1 (2%) | () | | Integumentary System | | | | | | Skin | (50) | (50) | (50) | (50) | | Cyst epithelial inclusion | 1 (2%) | V7 | V7 | (· ·) | | Inflammation, chronic active | 3 (6%) | 1 (2%) | | 2 (4%) | | Inflammation, granulomatous | X 1. 3 | (/ | | 1 (2%) | | Subcutaneous tissue, cyst epithelial inclusion | | 1 (2%) | | ` / | | Musculoskeletal System
None | | | | | | Narvous System | | | | | | Nervous System | (50) | (50) | (50) | (50) | | Brain Negrosis food | (50) | (50) | (50) | (50) | | Necrosis, focal | 1 (2%) | | | | | Artery, inflammation, chronic active | 1 (2%) | | | | TABLE C5 Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |---|---|---|---|--| | Respiratory System | | | | | | Larynx | (50) | (50) | (50) | (50) | | Inflammation, suppurative | 1 (2%) | (30) | (30) | (30) | | Lung | (49) | (49) | (49) | (49) | | Hemorrhage | 1 (2%) | (12) | (12) | 1 (2%) | | Mineralization | 1 (2/0) | 1 (2%) | | 1 (270) | | Alveolar epithelium, hyperplasia | 1 (2%) | 5 (10%) | 5 (10%) | 7 (14%) | | Alveolus, infiltration cellular, histiocyte | 2 (4%) | 4 (8%) | 5 (10%) | 1 (2%) | | Bronchiole, hyperplasia | 2 (470) | + (070) | 1 (2%) | 1 (270) | | Bronchiole, hyperplasia, atypical | | 38 (78%) | 46 (94%) | 46 (94%) | | Bronchiole, inflammation, chronic active | | 30 (7070) | TO (2T/0) | 1 (2%) | | Nose | (50) | (50) | (49) | (50) | | Inflammation, suppurative | 3 (6%) | 47 (94%) | 49 (100%) | 49 (98%) | | Glands, necrosis | 3 (0/0) | 1 (2%) | 49 (100/0) | 77 (70/0) | | Glands, respiratory epithelium, metaplasia | 12 (24%) | 50 (100%) | 49 (100%) | 50 (100%) | | | | 30 (100%) | 49 (100%) | 30 (100%) | | Olfactory epithelium, atrophy | 14 (28%) | 50 (1000/) | 49 (099/) | 11 (220/) | | Olfactory epithelium, degeneration, hyaline | | 50 (100%) | 48 (98%) | 11 (22%) | | Olfactory epithelium, respiratory epithelium | | 50 (1000) | 40 (1000() | 50 (1000/) | | metaplasia | 1 (2%) | 50 (100%) | 49 (100%) | 50 (100%) | | Respiratory epithelium, metaplasia, squamo | us | | 1 (20() | 1 (2%) | | Sinus, foreign body | | | 1 (2%) | | | | | | | | | Special Senses System | | | | | | special senses system | | | | | | Eye | (49) | (47) | (47) | (50) | | • | (49) | (47) | (47)
1 (2%) | (50)
1 (2%) | | Eye | (49) | (47)
2 (4%) | ` / | ` / | | Eye
Phthisis bulbi | (49) | , , | 1 (2%) | 1 (2%) | | Eye Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization | (49) | , , | 1 (2%)
1 (2%) | 1 (2%)
1 (2%) | | Eye Phthisis bulbi Cornea, inflammation, chronic active | , | 2 (4%) | 1 (2%) | 1 (2%)
1 (2%)
2 (4%) | | Eye Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Harderian gland | (50) | 2 (4%) | 1 (2%)
1 (2%)
(50) | 1 (2%)
1 (2%)
2 (4%)
(50) | | Eye Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Harderian gland | (50) | 2 (4%) | 1 (2%)
1 (2%)
(50) | 1 (2%)
1 (2%)
2 (4%)
(50) | | Eye Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Harderian gland Hyperplasia | (50) | 2 (4%) | 1 (2%)
1 (2%)
(50) | 1 (2%)
1 (2%)
2 (4%)
(50) | | Eye Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Harderian gland Hyperplasia Urinary System | (50)
2 (4%) | 2 (4%)
(49)
2 (4%) | 1 (2%)
1 (2%)
(50)
3 (6%) | 1 (2%)
1 (2%)
2 (4%)
(50)
2 (4%) | | Eye Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Harderian gland Hyperplasia Urinary System Kidney | (50)
2 (4%)
(50) | 2 (4%)
(49)
2 (4%) | 1 (2%)
1 (2%)
(50)
3 (6%) | 1 (2%)
1 (2%)
2 (4%)
(50)
2 (4%) | | Eye Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Harderian gland Hyperplasia Urinary System Kidney Cyst | (50)
2 (4%)
(50)
1 (2%) | 2 (4%)
(49)
2 (4%) | (50)
(50)
2 (4%) | 1 (2%)
1 (2%)
2 (4%)
(50)
2 (4%) | | Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Harderian gland Hyperplasia Urinary System Kidney Cyst Infarct | (50)
2 (4%)
(50)
1 (2%)
1 (2%) | 2 (4%)
(49)
2 (4%) | (50)
(50)
2 (4%) | 1 (2%)
1 (2%)
2 (4%)
(50)
2 (4%) | | Eye Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Harderian gland Hyperplasia Urinary System Kidney Cyst Infarct Inflammation, suppurative | (50)
2 (4%)
(50)
1 (2%)
1 (2%)
1 (2%) | 2 (4%)
(49)
2 (4%)
(50)
2 (4%) | (50)
2 (4%)
1 (2%) | (50)
(50)
(50) | | Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Harderian gland Hyperplasia Urinary System Kidney Cyst Infarct Inflammation, suppurative Metaplasia, osseous | (50)
2 (4%)
(50)
1 (2%)
1 (2%)
1 (2%)
7 (14%) | 2 (4%) (49) 2 (4%) (50) 2 (4%) 3 (6%) | (50)
2 (4%)
1 (2%)
500
3 (6%) | (50)
1 (2%)
2 (4%)
(50)
2 (4%)
(50) | | Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Harderian gland Hyperplasia Urinary System Kidney Cyst Infarct Inflammation, suppurative Metaplasia, osseous Nephropathy | (50)
2 (4%)
(50)
1 (2%)
1 (2%)
1 (2%)
7 (14%)
45 (90%)
1 (2%) | 2 (4%) (49) 2 (4%) (50) 2 (4%) 3 (6%) | (50)
2 (4%)
1 (2%)
500
3 (6%) | (50)
1 (2%)
2 (4%)
(50)
2 (4%)
(50) | | Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Harderian gland Hyperplasia Urinary System Kidney Cyst Infarct Inflammation, suppurative Metaplasia, osseous Nephropathy Capsule, fibrosis | (50)
2 (4%)
(50)
1 (2%)
1 (2%)
1 (2%)
7 (14%)
45 (90%) | 2 (4%) (49) 2 (4%) (50) 2 (4%) 3 (6%) | (50)
2 (4%)
1 (2%)
500
3 (6%) | (50)
1 (2%)
2 (4%)
(50)
2 (4%)
(50) | | Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Harderian gland Hyperplasia Urinary System Kidney Cyst Infarct Inflammation, suppurative Metaplasia, osseous Nephropathy Capsule, fibrosis Papilla, necrosis Pelvis, dilatation | (50)
2 (4%)
(50)
1 (2%)
1 (2%)
1 (2%)
7 (14%)
45 (90%)
1 (2%)
1 (2%) | 2 (4%) (49) 2 (4%) (50) 2 (4%) 3 (6%) 43 (86%) 1 (2%) | (50)
2 (4%)
1 (2%)
500
3 (6%) | (50)
1 (2%)
2 (4%)
(50)
2 (4%)
(50) | | Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Harderian gland Hyperplasia Urinary System Kidney Cyst Infarct Inflammation, suppurative Metaplasia, osseous Nephropathy Capsule, fibrosis Papilla, necrosis Pelvis, dilatation Renal tubule, hyperplasia | (50)
2 (4%)
(50)
1 (2%)
1 (2%)
1 (2%)
7 (14%)
45 (90%)
1 (2%) | 2 (4%) (49) 2 (4%) (50) 2 (4%) 3 (6%) 43 (86%) | (50)
2 (4%)
1 (2%)
500
3 (6%) | 1 (2%)
1 (2%)
2 (4%)
(50)
2 (4%)
(50)
(50)
1 (2%)
34 (68%) | | Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Harderian gland Hyperplasia Urinary System Kidney Cyst Infarct Inflammation, suppurative Metaplasia, osseous Nephropathy Capsule, fibrosis Papilla, necrosis Pelvis, dilatation | (50)
2 (4%)
(50)
1 (2%)
1 (2%)
1 (2%)
7 (14%)
45 (90%)
1 (2%)
1 (2%) | 2 (4%) (49) 2 (4%) (50) 2 (4%) 3 (6%) 43 (86%) 1 (2%) | (50)
2 (4%)
1 (2%)
500
3 (6%) | (50)
1 (2%)
2 (4%)
(50)
2 (4%)
(50) | ## APPENDIX D SUMMARY OF LESIONS IN FEMALE MICE IN THE 2-YEAR INHALATION STUDY OF DIVINYLBENZENE-HP | TABLE D1 | Summary of the Incidence of Neoplasms in Female Mice | | |----------|--|--------------| | | in the 2-Year Inhalation Study of Divinylbenzene-HP | D-2 | | TABLE D2 | Individual Animal Tumor Pathology of Female Mice | | | | in
the 2-Year Inhalation Study of Divinylbenzene-HP | D-6 | | TABLE D3 | Statistical Analysis of Primary Neoplasms in Female Mice | | | | in the 2-Year Inhalation Study of Divinylbenzene-HP | D-28 | | TABLE D4 | Historical Incidence of Alveolar/bronchiolar Neoplasms | | | | in Control Female B6C3F, Mice | D-3 1 | | TABLE D5 | • | | | | in the 2-Year Inhalation Study of Divinylbenzene-HP | D-32 | TABLE D1 Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP^a | | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |---|------------------------|--------------|---------|---------| | Disposition Summary | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Early deaths | | | | | | Accidental death | | | 1 | | | Moribund | 11 | 12 | 8 | 7 | | Natural deaths | 6 | 3 | 3 | 1 | | Survivors | | | | | | Terminal sacrifice | 33 | 35 | 38 | 42 | | Animals examined microscopically | 50 | 50 | 50 | 50 | | Alimentary System | | | | | | Gallbladder | (45) | (41) | (36) | (41) | | Intestine large, colon | (48) | (50) | (50) | (50) | | Intestine large, cecum | (47) | (49) | (48) | (50) | | Intestine small, duodenum | (46) | (48) | (48) | (49) | | Carcinoma | \ -/ | √ - <i>7</i> | 1 (2%) | ` / | | Histiocytic sarcoma | 1 (2%) | | ` ' | | | Intestine small, jejunum | (46) | (48) | (48) | (49) | | Carcinoma | , , | 2 (4%) | , | | | Liver | (49) | (50) | (50) | (50) | | Hepatocellular carcinoma | 3 (6%) | 4 (8%) | 3 (6%) | 2 (4%) | | Hepatocellular carcinoma, multiple | 2 (4%) | | | | | Hepatocellular adenoma | 12 (24%) | 4 (8%) | 5 (10%) | 4 (8%) | | Hepatocellular adenoma, multiple | 5 (10%) | 3 (6%) | 1 (2%) | 1 (2%) | | Hepatocholangiocarcinoma | 1 (2%) | | | | | Histiocytic sarcoma | 1 (2%) | | | | | Mesentery | (17) | (16) | (4) | (5) | | Pancreas | (48) | (50) | (50) | (50) | | Histiocytic sarcoma | 1 (2%) | | | | | Salivary glands | (50) | (50) | (50) | (50) | | Stomach, forestomach | (50) | (50) | (50) | (50) | | Stomach, glandular
Adenoma | (49)
1 (2%) | (50) | (49) | (49) | | Cardiovascular System | | | | | | Heart System | (50) | (50) | (50) | (50) | | Carcinoma, metastatic, mammary gland | () | () | | 1 (2%) | | Sarcoma | | 1 (2%) | | | | Endocrine System | | | | | | Adrenal cortex | (50) | (50) | (50) | (50) | | Hepatocellular carcinoma, metastatic, liver | (==) | 1 (2%) | (50) | (00) | | Histiocytic sarcoma | 1 (2%) | - (=//) | | | | Adrenal medulla | (49) | (50) | (49) | (50) | | Histiocytic sarcoma | 1 (2%) | () | (- / | V7 | | Pheochromocytoma malignant | ` / | | | 2 (4%) | | Pheochromocytoma benign | | | 1 (2%) | ` / | | Islets, pancreatic | (48) | (49) | (49) | (50) | | Carcinoma | 1 (2%) | | | | | Pituitary gland | (47) | (50) | (49) | (45) | | Histiocytic sarcoma | 1 (2%) | | | | | Pars distalis, adenoma | 8 (17%) | 8 (16%) | 1 (2%) | 1 (2%) | | Pars intermedia, adenoma | 1 (2%) | | | | | Thyroid gland | (49) | | | (48) | TABLE D1 Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |---|------------------------|---------|--------|---------| | General Body System | | | | | | None | | | | | | Genital System | | | | | | Ovary | (48) | (50) | (49) | (49) | | Cystadenoma | 3 (6%) | , | , | 1 (2%) | | Hemangioma | | | | 1 (2%) | | Histiocytic sarcoma | 1 (2%) | | | ` ' | | Luteoma | 1 (2%) | | | | | Uterus | (49) | (50) | (50) | (49) | | Adenoma | | | | 1 (2%) | | Carcinoma | | | | 1 (2%) | | Fibroma | | 1 (2%) | | | | Histiocytic sarcoma | | | 2 (4%) | | | Polyp stromal | 1 (2%) | 3 (6%) | | 2 (4%) | | Hematopoietic System | | | | | | Bone marrow | (49) | (49) | (50) | (50) | | Hemangiosarcoma | (12) | 2 (4%) | (50) | (50) | | Histiocytic sarcoma | 1 (2%) | 2 (170) | | | | Sarcoma, metastatic, skin | 1 (270) | | 1 (2%) | | | Lymph node | (9) | (3) | (5) | (2) | | Renal, carcinoma, metastatic, mammary gland | | (-) | (-) | 1 (50%) | | Lymph node, bronchial | (43) | (46) | (39) | (39) | | Lymph node, mandibular | (41) | (45) | (44) | (41) | | Histiocytic sarcoma | 1 (2%) | (.5) | () | (11) | | Lymph node, mesenteric | (49) | (50) | (49) | (49) | | Carcinoma, metastatic, mammary gland | | () | | 1 (2%) | | Histiocytic sarcoma | 1 (2%) | | | , , | | Lymph node, mediastinal | (44) | (44) | (38) | (38) | | Alveolar/bronchiolar carcinoma, metastatic, lu | . , | ` ′ | ` ′ | 1 (3%) | | Carcinoma, metastatic, mammary gland | | | | 1 (3%) | | Hepatocholangiocarcinoma, metastatic, liver | | | | 1 (3%) | | Histiocytic sarcoma | 1 (2%) | | | ` / | | Spleen | (49) | (50) | (49) | (49) | | Hemangiosarcoma | • • | 3 (6%) | • • | , , | | Histiocytic sarcoma | 1 (2%) | ` ′ | | | | Гһутиѕ | (49) | (47) | (46) | (44) | | Carcinoma, metastatic, mammary gland | | | | 1 (2%) | | Histiocytic sarcoma | 1 (2%) | | | , , | | Integumentary System | | | | | | Mammary gland | (50) | (49) | (50) | (49) | | Carcinoma | (30) | 2 (4%) | (30) | (47) | | Carcinoma, multiple | | 4 (470) | | 1 (2%) | | Skin | (50) | (50) | (50) | (50) | | Squamous cell papilloma | 1 (2%) | (50) | (30) | (50) | | Subcutaneous tissue, hemangiosarcoma | 1 (2%) | 1 (2%) | | | | Subcutaneous tissue, neural crest tumor | 1 (2%) | 1 (270) | | | | Subcutaneous tissue, neural crest tumor
Subcutaneous tissue, sarcoma | 1 (2%) | 1 (2%) | 2 (4%) | 1 (2%) | | Subcutaneous tissue, sarcoma, multiple | 1 (270) | 1 (2%) | 1 (2%) | 1 (270) | TABLE D1 Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |--|-----------------|------------------|---------|-----------------| | Musculoskeletal System | | | | | | Bone | (50) | (50) | (50) | (50) | | Osteoma | | 1 (2%) | | | | Osteosarcoma | | (1) | 1 (2%) | (1) | | Skeletal muscle Carcinoma, metastatic, mammary gland | | (1) | | (1)
1 (100%) | | Nervous System | | | | | | Brain | (50) | (50) | (50) | (50) | | Meningioma benign | | | 1 (2%) | | | Respiratory System | | | | | | Larynx | (48) | (50) | (50) | (49) | | Lung | (50) | (50) | (50) | (49) | | Alveolar/bronchiolar adenoma | 4 (8%) | 9 (18%) | 4 (8%) | 6 (12%) | | Alveolar/bronchiolar adenoma, multiple | 0 (40/) | 2 (60/) | 4 (00/) | 2 (4%) | | Alveolar/bronchiolar carcinoma
Alveolar/bronchiolar carcinoma, multiple | 2 (4%) | 3 (6%)
2 (4%) | 4 (8%) | 5 (10%) | | Carcinoma, metastatic, mammary gland | | 2 (470) | | 1 (2%) | | Hemangiosarcoma, metastatic, spleen | | 1 (2%) | | 1 (270) | | Hepatocellular carcinoma, metastatic, liver | 3 (6%) | 2 (4%) | | 1 (2%) | | Hepatocholangiocarcinoma, metastatic, liver | 1 (2%) | | | ` ′ | | Histiocytic sarcoma | 1 (2%) | | | | | Sarcoma, metastatic, skin | | 2 (4%) | 1 (2%) | | | Nose | (50) | (50) | (50) | (49) | | Hemangioma
Histiocytic sarcoma | 1 (2%) | | | | | Olfactory epithelium, neuroblastoma | 1 (2%) | | | 1 (2%) | | Frachea | (49) | (50) | (50) | (50) | | Special Senses System | | | | | | Eye | (50) | (50) | (50) | (49) | | Harderian gland | (50) | (50) | (50) | (50) | | Adenoma | 4 (8%) | 1 (2%) | 4 (8%) | 5 (10%) | | Carcinoma | 2 (4%) | 4 (8%) | 1 (2%) | 2 (4%) | | Jrinary System | | | | | | Kidney | (49) | (50) | (50) | (50) | | Carcinoma, metastatic, mammary gland | | | | 1 (2%) | | Hepatocellular carcinoma, metastatic, liver | 1 (20/) | | | 1 (2%) | | Histiocytic sarcoma
Renal tubule, adenoma | 1 (2%) | | | 1 (2%) | | Jrinary bladder | (49) | (50) | (50) | (49) | | Systemic Lesions | | | | | | Multiple organs ^c | (50) | (50) | (50) | (50) | | riumpie organo | | (50) | | (30) | | Histiocytic sarcoma | 1 (2%) | | 2 (4%) | | TABLE D1 Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |---|------------------------|--------|--------|---------| | Neoplasm Summary | | | | | | Total animals with primary neoplasms ^c | 40 | 40 | 26 | 26 | | Total primary neoplasms | 68 | 66 | 37 | 41 | | 1 , 1 | | | | | | Total animals with benign neoplasms | 28 | 21 | 14 | 19 | | Total benign neoplasms | 42 | 30 | 17 | 25 | | Total animals with malignant neoplasms | 22 | 29 | 19 | 13 | | Total malignant neoplasms | 25 | 36 | 20 | 16 | | Total animals with metastatic neoplasms | 4 | 5 | 2 | 2 | | Total metastatic neoplasms | 4 | 6 | 2 | 12 | | Total animals with uncertain neoplasms— | | | | | | benign or malignant | 1 | | | | | Total uncertain neoplasms | 1 | | | | a b Number of animals examined microscopically at the site and the number of animals with neoplasm. Number of animals with any tissue examined microscopically. Primary neoplasms: all neoplasms except metastatic neoplasms TABLE D2 Individual Animal Tumor Pathology of Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 3
5
2 | 3
6
6 | 3
8
6 | 4
5
0 | 4
7
9 | 5
7
6 | 8 | 9 | 6
2
5 | 5 | 6
6
0 | 6
7
6 | 8 | 6
8
7 | 7
0
9 | 7
1
0 | 7
1
1 | | 7
3
1 | 7
3
1 | 7
3
1 | 7
3
1 | 7
3
1 | 7
3
1 | | | |--|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---|-------------|-------------|-------------|-------------|-------------|-------------|---|--| | Carcass ID Number | 1
0
9 | 4 | 1
1
6 | 1
2
4 | 1
4
8 | 1
0
1 | 1
1
7 | 1
0
5 | 1
3
4 | 1
2
3 | 1
3
8 | 1
0
3 | 1
1
8 | 1
4
7 | 1
3
3
| 2 | 1
2
7 | 1 | 1 | 1
2
2 | 1
2
5 | 1
3
9 | 1
4
2 | | 0 | | | Alimentary System | Esophagus | + | | | Gallbladder | + | + | + | + | + | + | + | + | Α | Α | + | + | + | Α | Α | + | + | + | + | + | + | + | + | + | + | | | Intestine large, colon | + | + | + | + | + | + | + | + | + | Α | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | | | Intestine large, rectum | + | + | + | + | + | + | + | | + | | | | | Α | | | | | + | + | + | + | + | + | + | | | Intestine large, cecum | + | + | + | + | + | + | + | | | | | | | Α | | | | | | + | + | + | + | + | + | | | Intestine small, duodenum Histiocytic sarcoma | + | + | + | + | +
X | + | + | + | A | Α | + | + | + | A | Α | + | + | + | + | + | + | + | + | + | + | | | Intestine small, jejunum | + | + | + | + | + | + | + | | | | | | | Α | | | | | + | + | + | + | + | + | + | | | Intestine small, ileum | + | + | + | + | + | + | + | | | | | | | Α | | | | | | + | + | + | + | + | + | | | Liver | + | + | + | + | + | + | | + | | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | | | Hepatocellular carcinoma | | | | | | | X | | X | | | | | | | | | | v | v | | | | | | | | Hepatocellular carcinoma, multiple | | | | | | | | | | | | | v | | | | v | | X
X | Х | | v | Х | | | | | Hepatocellular adenoma
Hepatocellular adenoma, multiple | | | | | | | | | v | X | | | X | | | | X | | Λ | X | | Λ | Λ | | | | | Hepatocholangiocarcinoma | | | | | | | | | Λ | Λ | | | | | X | | | | | Λ | | | | | | | | Histiocytic sarcoma | | | | | X | | | | | | | | | | 1 | | | | | | | | | | | | | Mesentery | | | | | 11 | | + | | + | | | | | + | + | + | | | + | + | | | + | | | | | Pancreas | + | + | + | + | + | + | + | + | + | Α | + | + | + | Α | + | + | + | + | + | + | + | + | + | + | + | | | Histiocytic sarcoma | | | | | X | Salivary glands | + | | | Stomach, forestomach | + | | | Stomach, glandular | + | + | + | + | + | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | | | Adenoma | Tooth | | | | | | | | | | | | | + | | | | | | + | | | | | | | | | Cardiovascular System | Blood vessel | | | + | Heart | + | | | Endocrine System | Adrenal cortex | + | | | Histiocytic sarcoma | | | | | X | | + | , | | | | | | | | , | , | , | + | + | + | | | | , | | | Adrenal medulla Histiocytic sarcoma | + | + | + | + | +
X | + | | | Islets, pancreatic | + | + | + | + | | + | + | + | + | Δ | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | | | Carcinoma | | | | | | | | | | | | | | | | Χ | | | | | | | | | | | | Parathyroid gland | | | | | | | | | | | | | | M | | | | | | | | | | + | + | | | Pituitary gland | + | + | + | + | | | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | | | Histiocytic sarcoma | | | | | X | | | v | | | | | | | v | | | | | | | | | | v | | | Pars distalis, adenoma Pars intermedia, adenoma | | | | | | | | X | | | | | | | X | | | | | | | Х | | | X | | | Thyroid gland | + | + | + | + | + | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | | + | + | + | | | Thyrota giana | ' | ' | | | | | | , | ' | | | ' | | <i>1</i> 1 | ' | ' | ' | | | ' | ' | ' | ' | | | | | General Body System
None | ^{+:} Tissue examined microscopically A: Autolysis precludes examination M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined TABLE D2 Individual Animal Tumor Pathology of Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 7
3
2 7
3
3 | |--|--------------|-----------------------------| | Carcass ID Number | 1
0
4 | 1
0
6 | 1
1
0 | 1
1
1 | 1
1
4 | 1
1
5 | 1
2
8 | 1
3
0 | 1
3
7 | 1
4
1 | 1
4
3 | 1
5
0 | 1
0
7 | 1
0
8 | 1
1
2 | 1
2
0 | 1
2
6 | 1
2
9 | 1
3
1 | 1
3
2 | 1
3
5 | 1
3
6 | 1
4
4 | 4 | 1
4
9 | Total
Tissues/
Tumors | | Alimentary System | Esophagus | + | 50 | | Gallbladder | + | + | + | + | M | + | 45 | | Intestine large, colon | + | 48 | | Intestine large, rectum | + | + | + | + | + | + | + | + | + | + | + | I | + | + | + | + | + | + | + | + | + | + | + | + | + | 46 | | Intestine large, cecum | + | 47 | | Intestine small, duodenum
Histiocytic sarcoma | + | 46 | | Intestine small, jejunum | + | 46 | | Intestine small, ileum | + | 46 | | Liver | + | 49 | | Hepatocellular carcinoma | | | | | | | | | | | X | | | | | | | | | | | | | | | 3 | | Hepatocellular carcinoma, multiple | 2 | | Hepatocellular adenoma | | 37 | | 37 | X | | | X | X | X | | | | X | | | | X | | | X | | | | | 12 | | Hepatocellular adenoma, multiple
Hepatocholangiocarcinoma | | X | | X | 5 | | Histiocytic sarcoma
Mesentery | | | | + | | | + | | | + | | | | | | _ | | + | | _ | | _ | | _ | _ | 1
17 | | Pancreas | + | _ | _ | + | + | _ | | _ | + | + | _ | _ | + | + | + | + | + | + | + | + | + | | + | + | + | 48 | | Histiocytic sarcoma | | | | | | | _ | | | | | | _ | | | | | _ | | | _ | | | | | 1 | | Salivary glands | + | 50 | | Stomach, forestomach | + | 50 | | Stomach, glandular | + | 49 | | Adenoma | | | | | | | | | | | | | | | X | | | | | | | | | | | 1 | | Tooth | + | + | | + | | | | | | | | + | | | | | + | | | | | + | | + | | ç | | Cardiovascular System | Blood vessel | 1 | | Heart | + | 50 | | Endocrine System | Adrenal cortex | + | 50 | | Histiocytic sarcoma | т | | | | | | 1 | | Adrenal medulla | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | Ι | + | + | + | + | + | 49 | | Histocytic sarcoma | + | | | | | | | | | | | + | + | + | | | + | + | + | + | | | | + | | 1 | | Islets, pancreatic Carcinoma | | _ | | | | | | | | | ⊤
 | | | | | Τ. | | | | | | | | | T | 48 | | Parathyroid gland | + | I | + | + | + | + | | | | M | | | + | + | + | + | + | + | + | + | | M | | | | 36 | | Pituitary gland | + | I | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | 47 | | Histiocytic sarcoma | \mathbf{v} | | | X | | | | X | | | | | X | | | | X | | | | | | | | | 1 8 | | Pars distalis, adenoma Pars intermedia, adenoma | X | | | Λ | | | | Λ | | | | | Λ | | | | Λ | | | | | | | | | 1 | | Thyroid gland | + | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | + | + | _ | _ | + | + | _ | _ | _ | _ | _ | _ | + | 49 | | rnyroid giand | + | - | т | т | - | - | - | - | - | Т | - | - | - | - | - | - | - | - | - | - | т | т | _ | _ | Τ* | 49 | | General Body System | None | TABLE D2 Individual Animal Tumor Pathology of Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 3
5
2 | 6 | 3
8
6 | 4
5
0 | 4
7
9 | 5
7
6 | 5
8
6 | 5
9
6 | 6
2
5 | 6
5
8 | 6
6
0 | 6
7
6 | 6
8
1 | 6
8
7 | 7
0
9 | 7
1
0 | 7
1
1 | 7
3
1 7
3
2 | |--------------------------------------|-------------|---|-------------|-------------|-------------|-------------
-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | Carcass ID Number | 1
0
9 | 4 | 1
1
6 | 1
2
4 | 1
4
8 | 1
0
1 | 1
1
7 | 1
0
5 | 1
3
4 | 1
2
3 | 1
3
8 | 1
0
3 | 1
1
8 | 1
4
7 | 1
3
3 | 1
2
1 | 1
2
7 | 1
1
3 | 1
1
9 | 1
2
2 | 1
2
5 | 1
3
9 | 1
4
2 | 1
4
5 | 0 | | Genital System | Clitoral gland | | | | | | | | | | | | | | | Μ | | | | | | | | | | + | | 2 | | T | | | | | | T | | | T
_ | T
_ | T | Α | + | + | Τ | + | + | + | | + | + | | + | | Ovary | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | Α | _ | _ | 1 | _ | _ | _ | _ | _ | _ | | | | Cystadenoma | | | | | X | | | | | | | | | | | | | | | | | | | X | | | Histiocytic sarcoma | | | | | Λ | Luteoma | | | | | | | | , | | + | + | + | , | ٨ | | | | + | + | + | | | | | 1 | | Uterus
Polyp stromal | + | + | + | + | + | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | Т | | Hematopoietic System | Bone marrow | + | + | + | + | + | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | | Histiocytic sarcoma | | | | | Χ | Lymph node | | | + | | | | | | | + | | + | + | | | + | | | | | + | | + | + | | | Lymph node, bronchial | + | + | + | + | M | + | + | + | M | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Lymph node, mandibular | + | M | + | + | + | + | + | M | + | + | + | + | + | + | M | M | + | + | + | + | + | M | + | + | + | | Histiocytic sarcoma | | | | | X | Lymph node, mesenteric | + | + | + | + | + | + | + | + | + | + | + | + | + | Α | + | + | + | + | + | + | + | + | + | + | + | | Histiocytic sarcoma | | | | | Χ | Lymph node, mediastinal | + | + | + | + | + | + | + | M | + | + | + | + | + | + | M | + | + | + | + | + | + | M | + | + | M | | Histiocytic sarcoma | | | | | X | Spleen | + | + | + | + | + | + | + | + | + | + | + | + | + | Α | + | + | + | + | + | + | + | + | + | + | + | | Histiocytic sarcoma | | | | | X | Thymus
Histiocytic sarcoma | + | + | + | + | +
X | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Integumentary System | Mammary gland | + | | Skin | + | | Squamous cell papilloma | Subcutaneous tissue, hemangiosarcoma | | | | | | | | | | | | | | | | | X | | | | | | | | | | Subcutaneous tissue, neural crest | tumor | Subcutaneous tissue, sarcoma | | | | X | Musculoskeletal System | Bone | + | | Nervous System | Brain | + | TABLE D2 Individual Animal Tumor Pathology of Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP: control | Number of Days on Study | 7
3
2 7
3
3 | |--------------------------------------|-----------------------------| | Carcass ID Number | 1
0
4 | 1
0
6 | 1
1
0 | 1
1
1 | 1
1
4 | 1
1
5 | 1
2
8 | 1
3
0 | 1
3
7 | 1
4
1 | 1
4
3 | 1
5
0 | 1
0
7 | 1
0
8 | 1
1
2 | 1
2
0 | 1
2
6 | 1
2
9 | 1
3
1 | 1
3
2 | 1
3
5 | 1
3
6 | 1
4
4 | 1
4
6 | 1
4
9 | Total
Tissues/
Tumors | | Genital System | Clitoral gland | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | 47 | | Ovary | + | 48 | | Cystadenoma | | | | | | | | | | | | | | | X | | | | | X | | | | | | 3 | | Histiocytic sarcoma | 1 | | Luteoma | X | | | | | 1 | | Uterus
Polyp stromal | +
X | + | + | + | + | 49
1 | | Hematopoietic System | Bone marrow | + | 49 | | Histiocytic sarcoma | 1 | | Lymph node | | | | | | | | | | | | | | + | | | | | | | | | | | | 9 | | Lymph node, bronchial | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | M | + | M | + | + | M | + | + | + | 43 | | Lymph node, mandibular | + | + | + | + | + | + | M | M | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | M | 41 | | Histiocytic sarcoma | 1 | | Lymph node, mesenteric | + | 49 | | Histiocytic sarcoma | 1 | | Lymph node, mediastinal | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | I | + | + | + | 44 | | Histiocytic sarcoma | 1 | | Spleen | + | 49 | | Histiocytic sarcoma | 1 | | Thymus Histiocytic sarcoma | + | 49
1 | | Integumentary System | Mammary gland | + | 50 | | Skin | + | 50 | | Squamous cell papilloma | | | | | X | 1 | | Subcutaneous tissue, hemangiosarcoma | 1 | | Subcutaneous tissue, neural crest | tumor | | | | | | | | | X | | | | | | | | | | | | | | | | | 1 | | Subcutaneous tissue, sarcoma | 1 | | Musculoskeletal System | | | | | | | | | | | | | , | | | | | | | | | | | | | | | Bone | + | 50 | | Nervous System | Brain | + | 50 | TABLE D2 Individual Animal Tumor Pathology of Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 3
5
2 | 3
6
6 | 3
8
6 | 4
5
0 | 4
7
9 | 7 | 5
8
6 | 5
9
6 | 6
2
5 | 6
5
8 | 6
6
0 | 6
7
6 | | 6
8
7 | 7
0
9 | 7
1
0 | 7
1
1 | 7
3
1 7
3
2 | | |--|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--| | Carcass ID Number | 1
0
9 | 1
4
0 | 1
1
6 | 1
2
4 | 1
4
8 | 1
0
1 | 1
1
7 | 0 | 3 | 2 | 1
3
8 | 1
0
3 | 1 | 1
4
7 | 3 | 2 | 1
2
7 | 1 | 1 | 1
2
2 | 2 | | 1
4
2 | | 0 | | | Respiratory System | Larynx | + | + | + | + | + | + | + | + | A | + | + | + | + | A | + | + | + | + | + | + | + | + | + | | + | | | Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma | +
X | + | + | + | | | Hepatocellular carcinoma, metastatic, liver | | | | | | | | | Х | | | | | | | | | | X | | | | | | | | | Hepatocholangiocarcinoma, metastatic, liver | | | | | 37 | | | | 71 | | | | | | X | | | | 11 | | | | | | | | | Histiocytic sarcoma | | | | | X | Nose
Hemangioma | + | + | + | + | + | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | | | Histiocytic sarcoma | | | | | X | | | | | | | | | | Λ | | | | | | | | | | | | | Trachea | + | + | + | + | | + | + | + | + |
+ | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | | | Special Senses System | Eye | + | | | Harderian gland | + | | | Adenoma | | | | | | | | X | | | | | | | X | | | | | | | | | | | | | Carcinoma | | | | | | | | | | | | | | X | | | | | | X | | | | | | | | Urinary System | Kidney | + | + | + | + | | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | | | Histiocytic sarcoma | | | | | X | Urinary bladder | + | + | + | + | + | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | | | Systemic Lesions | Multiple organs | + | | | Histiocytic sarcoma | | | | | X | Lymphoma malignant | | | X | | | | Χ | | | X | | X | Χ | | | X | | X | | | | | | | | | TABLE D2 Individual Animal Tumor Pathology of Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP: Chamber Control | Number of Days on Study | 7
3
2 7
3
3 | |---|-----------------------------| | Carcass ID Number | 1
0
4 | 1
0
6 | 1
1
0 | 1
1
1 | 1
1
4 | 1
1
5 | 1
2
8 | 1
3
0 | 1
3
7 | 1
4
1 | 1
4
3 | 1
5
0 | 1
0
7 | 1
0
8 | 1
1
2 | 1
2
0 | 1
2
6 | 1
2
9 | 1
3
1 | 1
3
2 | 1
3
5 | 1
3
6 | 1
4
4 | 1
4
6 | 1
4
9 | Total
Tissues/
Tumors | | Respiratory System Larynx Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma | +++ | +
+
X | + + | +++ | +
+
X | + | +
+
X | +
+
X | + + | + | + + | + + | + + | + | + + | +
+
X | + + | + + | + + | + + | + | + | + | + + | + | 48
50
4
2 | | Hepatocellular carcinoma, metastatic,
liver
Hepatocholangiocarcinoma, metastatic,
liver
Histiocytic sarcoma | | | | | | | | | | | X | | | | | | | | | | | | | | | 3
1
1 | | Nose
Hemangioma
Histiocytic sarcoma
Trachea | + | 50
1
1
49 | | Special Senses System Eye Harderian gland Adenoma Carcinoma | ++ | + | +
+
X | ++ | ++ | + | + | + + | ++ | + | + | + + | ++ | + | +++ | +++ | +++ | + + | ++ | +
+
X | ++ | + | + | ++ | + | 50
50
4
2 | | Urinary System Kidney Histiocytic sarcoma Urinary bladder | + | 49
1
49 | | Systemic Lesions Multiple organs Histiocytic sarcoma Lymphoma malignant | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | +
X | +
X | + | + | +
X | 50
1
11 | | I ADLE DE | TA | BLE | D2 | |-----------|----|-----|----| |-----------|----|-----|----| | Nl CD Ctl. | | 5 | 5 | | | | | | | - | | | | 7 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | |---|--------|---|---|--------|---|---|-----|---|---|-----|-----|----------|-----|------------|--------|--------|---|---|---|---|---|---|---|---| | Number of Days on Study | 0
6 | 5 | | 5
0 | | | 1 3 | | | 9 | | | | 1 2
9 5 | 3
1 | 3 | 3 | 3 | 1 | 1 | 1 | 1 | 2 | 2 | Courses ID Normhau | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | | | | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | 3 | | Carcass ID Number | 1 8 | 5 | | 1 2 | | | | 8 | | 1 | 8 | | | 4 2 3 6 | | 0
6 | | 2 | | | | | 0 | | | Alimentary System | Esophagus | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | | Gallbladder | A | + | I | M | + | + | + | + | + | A | + | + , | Α · | + + | + | + | + | + | Ι | + | + | + | M | + | | ntestine large, colon | + | + | + | + | + | + | + | | | | | | | + + | | + | + | + | + | + | + | + | + | + | | ntestine large, rectum | + | + | + | + | + | + | + | + | + | | | | - | + + | | + | + | + | + | + | + | + | + | + | | ntestine large, cecum | + | + | + | + | + | + | + | + | + | | | - | Α · | | | | + | + | + | + | + | + | + | + | | Intestine small, duodenum | + | + | + | + | + | + | + | | | | | | Α · | | | | + | + | + | + | + | + | + | + | | ntestine small, jejunum
Carcinoma | + | + | + | + | + | + | + | + | + | A | + | + , | Α · | + + | + | + | + | + | + | + | + | + | + | + | | ntestine small, ileum | + | + | + | + | + | + | + | + | + | A | + | + , | Α . | + + | + | + | + | + | + | + | + | + | + | + | | Liver | + | + | + | + | + | + | + | + | + | + | + | + . | + - | + + | + | + | + | + | + | + | + | + | + | + | | Hepatocellular carcinoma | | | | | | | | | | | | | 2 | X | | | | | X | | | | | | | Hepatocellular adenoma | | | X | | | | | | | | | | | | | X | | | | | | | | X | | Hepatocellular adenoma, multiple | | | | | | | | | | | | | | X | | | | | | | | | | | | Mesentery | | + | | + | + | | | + | | | | + | | + + | | | | + | | | | | | | | ancreas | + | + | + | + | + | + | + | + | + | + | + | + . | | + + | | + | + | + | + | + | + | + | + | + | | alivary glands | + | + | + | + | + | + | + | + | + | + | + | + - | | + + | | + | + | + | + | + | + | + | + | + | | Stomach, forestomach | + | + | + | + | + | + | + | + | + | + | + | + - | | + + | | + | + | + | + | + | + | + | + | + | | Stomach, glandular
Footh | + | + | + | + | + | + | + | + | + | + + | | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | | Cardiovascular System | Heart | + | + | + | + | + | + | + | + | + | + | + | + . | + . | + + | + | + | + | + | + | + | + | + | + | + | | Sarcoma | | X | Endocrine System | Adrenal cortex | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | | Hepatocellular carcinoma, metastatic, liver | | | | | | | | | | | | | | | | | | | X | | | | | | | Adrenal medulla | + | + | + | + | + | + | + | + | + | + | + | + . | + - | + + | + | + | + | + | + | + | + | + | + | + | | slets, pancreatic | + | + | + | + | + | + | + | + | + | + | + - | ·
+ , | À · | + + | + | + | + | | + | + | + | + | + | + | | Parathyroid gland | + | + | + | Μ | + | | | | | | | | | M + | | | | | | | | | | | | Pituitary gland | + | | | | | | | | | | | | | + + | | | | | | | | | | | | Pars distalis, adenoma | | | | | | | | | | X | | | | | | | | | | | | | | X | | Thyroid gland | + | + | + | + | + | + | + | + | + | + | + | + , | Α · | + + | + | + | + | + | + | + | + | + | + | + | | General Body System | None | Genital System | Clitoral gland | M | + | M | + | + | + | + | + | + | M | + | + - | + 1 | M + | | + | + | + | + | + | + | + | + | + | | Ovary | + | + | + | + | + | + | + | + | | | | | | + + | | + | + | + | + | + | + | + | + | + | | Uterus | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | | | + | + | + | + | + | + | + | + | | Fibroma | | | | | | | | | | | | | | | X | | | | | | | | | | | Polyp stromal | | | | | | | | | | | | | | | | | | | Χ | | | | | | | Number of Days on Study | 7 | | |---|--------|---|--------|--------|--------|--------|--------|---|--------|---|--------|---|--------|---|--------|--------|---|---|---|---|---|--------|--------|--------|--------|--------------------| | rumber of Days on Study | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | 3 | | | | 3 | Total | | Carcass ID Number | 1
5 | 1 | 1
7 | 2
4 | 2
5 | 2
7 | 2
8 | 0 | 3
1 | 2 | 3
5 | 8 | 3
9 | 4 | 4
6 | 4
7 | 0 | 0 | 9 | 1 | 1 | 3
4 | 3
6 | 4
5 | 4
9 | Tissues/
Tumors | | Alimentary System | Esophagus | + | 50 | | Gallbladder | + | + | + | Ι | M | + | 41 | | Intestine large, colon | + | 50
48 | | Intestine large, rectum Intestine large, cecum | + | 49 | | Intestine small, duodenum | + | 48 | | Intestine small, jejunum | + | 48 | | Carcinoma | | | | | | | | | X | | | | | | | | | | | | | | | | X | 2 | | Intestine small, ileum | + | + | + | + | + | + | + | | + | + | + | + | + | +
| + | + | + | + | + | + | + | + | + | + | + | 48 | | Liver | + | 50 | | Hepatocellular carcinoma | | | | | | | | | X | | | | | | | | | | | X | | | | X | | 4 | | Hepatocellular adenoma Hepatocellular adenoma, multiple | | | | | | | | | X | | | | | | | | | | X | Λ | | | | | | 3 | | Mesentery | + | | + | + | | | + | + | Λ | | | | | | | | + | | + | | | | | | + | 16 | | Pancreas | + | 50 | | Salivary glands | + | 50 | | Stomach, forestomach | + | 50 | | Stomach, glandular | + | 50 | | Tooth | | + | | | | | + | | | + | | + | + | | + | | | | | | | + | + | | | 13 | | Cardiovascular System | Heart | + | 50 | | Sarcoma | 1 | | Endocrine System Adrenal cortex | + | 50 | | Hepatocellular carcinoma, metastatic, | | | _ | _ | Т | _ | _ | Т | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | | т | 1 | | Adrenal medulla | + | 50 | | Islets, pancreatic | + | 49 | | Parathyroid gland | + | M | + | M | + | M | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | M | + | + | + | 36 | | Pituitary gland | + | 50 | | Pars distalis, adenoma | | | | X | | | | | | | | | X | | | | | | | | X | | | | X | 8 | | Thyroid gland | + | 49 | | General Body System | None | Genital System | Clitoral gland | + | + | + | + | + | + | | | | | | | | + | | | | | | | + | + | M | + | | 41 | | Ovary | + | + | + | + | + | + | + | | + | + | + | + | + | | | + | + | + | + | + | + | + | + | | + | 50 | | Uterus
Fibroma | + | 50
1 | | Polyp stromal | | | | | | | | | X | | | | | | | | | | | X | | | | | | 3 | | | 5 | - | - | 5 | - | - | | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | |---|----------|--------|--------|---|--------|-----|------------|--------|--------|---|--------|--------|--------|---|--------|--------|---|---|---|---|--------|---|--------|---| | Number of Days on Study | 5 | 5
1 | | 5 | 5
6 | 5 (| | 6
5 | | 7 | 0 | 1 | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | • | | | 6 | 5 | 7 | 0 | 4 | 6 . | 8 | 6 | 3 | 7 | 9 | 5 | 9 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | | Constant North | 3 | 3 | 3 | 3 | 3 | 3 3 | | | | 3 | 3 | | 3 | | | | 3 | | 3 | 3 | 3 | 3 | 3 | | | Carcass ID Number | 1 8 | 5 | 2 | 2 | 5 | 1 2 | | | 1
4 | 8 | | 1
9 | | | | 0
6 | | | 9 | | 4
0 | | 0 | | | Hematopoietic System | Bone marrow Hemangiosarcoma | + | + | + | + | + | + - | - + | +
X | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | | ymph node | | | 1.1 | | + | | | | | | | + | | | | | | | | | | | | | | Lymph node, bronchial
Lymph node, mandibular | +
M | + | M
+ | + | + | + - | - +
- + | M | + | + | +
M | | т
М | | + | + | + | + | + | + | + | + | + | + | | Lymph node, mandrodiar | 1VI
+ | + | + | + | + | + - | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Lymph node, mediastinal | + | + | M | + | + | + - | - + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | M | | | Spleen | + | + | + | + | + | + - | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Hemangiosarcoma | | | | | | | | X | | | | | | | | | | | | | | | | | | Thymus | M | + | + | + | + | + - | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | | ntegumentary System | Mammary gland | + | + | + | + | + | | - + | + | + | + | + | A | + | + | + | | + | + | + | + | + | + | + | + | | Carcinoma | | | | , | | . 2 | | | | | | , | , | | | X | , | , | | | | | | | | Skin Subcutaneous tissue, hemangiosarcoma | + | + | + | + | + | + - | - + | +
X | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Subcutaneous tissue, sarcoma | | | | | | | X | | | | | | | | | | | | | | | | | | | Subcutaneous tissue, sarcoma, | multiple | X | Musculoskeletal System | Bone | + | + | | + | + | + - | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Osteoma | | | X | Skeletal muscle | | | | + | Nervous System | Brain | + | + | + | + | + | + - | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Respiratory System | Larynx | + | + | + | + | + | + - | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Lung Alveolar/bronchiolar adenoma | + | + | + | + | + | т - | - + | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | +
X | + | | Alveolar/bronchiolar carcinoma | | | | | | | | | | | | | X | | Λ | | | | | | | | Λ | | | Alveolar/bronchiolar carcinoma, | multiple | Hemangiosarcoma, metastatic, spleen | | | | | | | | X | | | | | | | | | | | | | | | | | | Hepatocellular carcinoma, metastatic, liver | | | | | | | | | | | | | | | | | | | X | | | | | | | Sarcoma, metastatic, skin
Nose | X
+ | + | + | + | + | + - | - X | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Frachea | + | + | + | + | + | + - | - + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Special Senses System | Eye | + | + | + | + | + | + - | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Harderian gland | + | + | + | + | + | + - | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Adenoma | Carcinoma | X | | | Individual Animal Tumor Pathology | of Fer | na | ie r | VIIC | e i | II U | ne | Z- : | rea | аг | 1111 | iai | ati | /11 | 511 | luy | 01 | | 1 7 1 | y. | DC. | IIZ | | | | 10 ppm | |--|--------|----|------|------|-----|--------|--------|-------------|-----|----|------|-----|-----|--------|--------|--------|----|---|-------|----|-----|-----|---|---|--------|------------------| | | 7 | | | Number of Days on Study | 3 | | | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | 2 | Т-4-1 | | Carcass ID Number | 3 | 3 | 3 | 3 | 3 | 3
2 | 3
2 | 3 | 3 | 3 | 3 | 3 | 3 | 3
4 | 3
4 | 3
4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | 3
4 | Total
Tissues | | Carcass 1D Ivanioci | 5 | 6 | 7 | | | 7 | | 0 | | | 5 | | 9 | | | | 1 | | | 1 | 3 | 4 | | 5 | | Tumors | Hematopoietic System Bone marrow | + | 49 | | Hemangiosarcoma | ' | ' | X | | ' | ' | | ' | ' | | | | ' | | ' | ' | ' | | ' | ' | | | | | | 2 | | Lymph node | 3 | | Lymph node, bronchial | + | + | + | + | + | + | + | + | + | Μ | + | + | + | + | + | + | + | + | + | + | + | + | Μ | + | + | 46 | | Lymph node, mandibular | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | 45 | | Lymph node, mesenteric | + | 50 | | Lymph node, mediastinal | + | + | + | M | + | | M | | + | M | | + | M | | + | + | + | + | + | + | + | + | + | + | + | 44 | | Spleen | + | 50 | | Hemangiosarcoma | | | X | | | | | | | | | | | | | | | | | | X | | | | | 3 | | Thymus | + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | 47 | | Integumentary System | Mammary gland | + | 49 | | Carcinoma | 2 | | Skin | + | 50 | | Subcutaneous tissue,
hemangiosarcoma | 1
1 | | Subcutaneous tissue, sarcoma
Subcutaneous tissue, sarcoma, | 1 | | multiple | 1 | | Musculoskeletal System | Bone | + | 50 | | Osteoma | 1 | | Skeletal muscle | 1 | | Nervous System | Brain | + | 50 | | Respiratory System | Larynx | + | 50 | | Lung | + | 50 | | Alveolar/bronchiolar adenoma | X | | X | X | | | | | | | | X | Χ | | | | | | | Χ | | | | | | 9 | | Alveolar/bronchiolar carcinoma | | | | | | | | | | | | | | X | | | | | | | | | X | | | 3 | | Alveolar/bronchiolar carcinoma, | | | | | | | | 3.7 | | | | | | | | | | | | 37 | | | | | | | | multiple | | | | | | | | X | | | | | | | | | | | | X | | | | | | 2 | | Hemangiosarcoma, metastatic, spleen
Hepatocellular carcinoma, metastatic, | 1 | | liver | | | | | | | | | X | | | | | | | | | | | | | | | | | 2 | | Sarcoma, metastatic, skin | | | | | | | | | 21 | | | | | | | | | | | | | | | | | 2 | | Nose | + | 50 | | Trachea | + | 50 | | Special Senses System | Eye | + | 50 | | Harderian gland | + | 50 | | Adenoma | | | | | | | X | | | | | | | | | | | | | | | | | | | 1 | | Carcinoma | | | | | | | | | X | | | | | | X | | X | | | | | | | | | 4 | | Individual Animal Tumor Pat | hology of l | Fer | nal | le I | Mic | e i | n t | he | 2- | Ye | ar | Inl | hal | atio | on | Stı | ıdy | of | Di | ivi | nyl | be | nz | ene | e-F | IP: | 10 ppm | |---|-------------|-----|-------------|--------| | Number of Days on Study | | 0 | 5
1
5 | 5
3
7 | 5
5
0 | 5
6
4 | 5
8
6 | 6
1
3 | 6
3
8 | 6
5
6 | 6
9
3 | 7
0
7 | 7
0
9 | 7
1
5 | 7
1
9 | 7
2
5 | 7
3
1 | 7
3
2 | | | Carcass ID Number | | 3
1
8 | 3
5
0 | 3
2
3 | 3
1
2 | 3
0
5 | 3
2
1 | 3
4
2 | 3
0
8 | 3
0
7 | 3
1
4 | 3
4
8 | 3
3
7 | 3
1
9 | 3
4
3 | 3
2
6 | 3
0
4 | 3
0
6 | 3
2
0 | 3
2
2 | 3
2
9 | 3
3
3 | 3
4
0 | 3
4
1 | 0 | 3
1
0 | | | Urinary System
Kidney
Urinary bladder | | + + | + + | + | + | + + | + + | + | | +++ | | | +++ | | | +++ | | + + | | | + + | | + + | +++ | | + | | | Systemic Lesions
Multiple organs
Lymphoma malignant | | + | + | + | +
X | +
X | +
X | + | + | + | + | + | +
X | +
X | + | + | + | + | + | + | + | + | +
X | + | + | + | | | Individual Animal Tumor Path | ology of Fe | ma | le l | Mio | e i | n t | he | 2- | Yea | ar i | [nł | ala | atio | on | Stı | ıdy | / O 1 | f D | ivi | ny | lbe | nz | en | e-F | H | P: | 10 ppm | |------------------------------|-------------|----|------|-----|-----|-----|----|----|-----|------|-----|-----|------|----|-----|-----|--------------|-----|-----|----|-----|----|----|-----|---|-----------|----------| | | 7 | , | 7 | | | Number of Days on Study | 3 | | 3 | | | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | 3 | | | | 3 | | 3 | Total | | Carcass ID Number | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 0 | 0 | 0 | 1 | 1 | 3 | 3 | 4 | ļ | 4 | Tissues/ | | | 5 | 6 | 7 | 4 | 5 | 7 | 8 | 0 | 1 | 2 | 5 | 8 | 9 | 4 | 6 | 7 | 1 | 3 | 9 | 1 | 3 | 4 | 6 | 5 | ; | 9 | Tumors | | Urinary System | Kidney | + | - | + | 50 | | Urinary bladder | + | - | + | 50 | | Systemic Lesions | Multiple organs | + | - | + | 50 | | Lymphoma malignant | X | | | | | X | | | | | | | | | X | | | | | | | X | | | | | 10 | | | 3 | 3 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 7 | 7 | 7 | 7 | 7 | | 7 | 7 | 7 | 7 | |---|--------|---|--------|---|---|----|----|----|--------|----|--------|---|-----|-----|------------|------------|---|-----|---|-----|-----|-----|----------|---|----------| | Number of Days on Study | 3 | 5 | | 1 | | | | | 0 | | | | | 3 | | | | | 3 | | | | | 3 | | | | 4 | 9 | 1 | 2 | 6 | 0 | 4 | 7 | 0 | 9 | 1 | 9 | 1 | 1 | 1 : | l 1 | 1 | 1 | 2 | 2 | . 2 | 2 2 | 2 | 2 | 2 | | Constant ID Novel or | | 5 | 5 | 5 | 5 | 5 | | | | | 5 | | 5 | | 5 : | | | | | | | | | 5 | | | Carcass ID Number | 1
7 | 9 | 3
7 | 2 | 9 | 1 | | 1 | | | 2
7 | | | 1 | | | | | | | | | 3 | 8 | | | Alimentary System | Esophagus | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | - | + + | + | + | + | + | - | + | - | + | + | | Gallbladder | + | M | Α | + | I | + | + | A | + | + | + | + | + | + - | - | ⊦ I | I | I | + | + | - | + + | - | + | + | | Intestine large, colon | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | - | + + | + | + | + | + | - | + + | - | + | + | | Intestine large, rectum | + | + | + | + | + | + | | | | + | + | + | + | + - | ⊢ - | + + | + | + | + | + | - | + + | + | + | + | | Intestine large, cecum | + | + | | + | | | | A | | | | | | | - | | | | + | + | - | + + | + | + | + | | Intestine small, duodenum Carcinoma | + | + | | | | | | | | | + | | | | - | | | + | + | + | - | + + | - | + | + | | Intestine small, jejunum | + | + | A | | | | + | | | | | | | | - | | | + | + | + | - | + + | - | + | + | | Intestine small, ileum | + | + | | | | | | | | | + | | | | | | | | | | - | + + | + | + | + | | Liver | + | + | | + | + | + | + | + | + | + | + | + | + | + . | F - | + + | + | + | + | + | - | + + | - | + | + | | Hepatocellular carcinoma | | | X | | | | | | | 37 | | | | | | | | | | | | | | | | | Hepatocellular adenoma | | | | | | | | | | X | | | | | | | | | | | | | | | | | Hepatocellular adenoma, multiple | Mesentery | 1 | | | | | | | | | + | + | + | | + - | | | | | | | | | | | | | Pancreas | + | + | + | + | + | + | + | + | + | | | | | | -
- | - +
- + | + | . + | + | + | | - + | | + | + | | Salivary glands
Stomach, forestomach | + | + | + | + | + | + | + | + | T
+ | | | | | | | r ∓
⊦ + | | . + | T | | | | | + | + | | Stomach, glandular | + | + | + | + | + | + | + | À | + | | | + | | + . | | | | | + | . + | | + + | | + | | | Footh | · | | | | , | | | 11 | | | | | | | + | + | | · | + | | | , | | + | | | Cardiovascular System | Heart | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | -
- | + + | + | + | + | + | | - + | - | + | + | | Endocrine System | Adrenal cortex
Adrenal medulla | + | + | + | + | + | + | + | | | | | + | + - | | ⊦ -
⊦ - | | | · + | | | | - + | _ ' | + | ⊤ | | Pheochromocytoma benign | IVI | - | - | - | - | 7" | Τ* | Τ* | Τ' | Т | Т | Г | Γ. | Γ. | | + | + | + | + | | | | | Т | 1 | | Islets, pancreatic | _ | + | + | + | + | + | + | Α | + | + | + | + | + | + - | - | + + | | . + | _ | | | | <u>.</u> | + | + | | Parathyroid gland | + | M | M | + | + | + | | | | | + | | | | | | | 1 + | + | · + | . 1 | / N | 1 | + | + | | Pituitary gland | + | | + | | | | | | | | + | | | | | | | | | | | | | | | | Pars distalis, adenoma | ' | | | | | | | | | | | | • | | · | | | Ċ | Ċ | | | | | , | • | | Thyroid gland | + | + | + | + | + | + | + | + | + | + | + | + | + | | | + + | + | + | + | + | - | + + | - | + | + | | General Body System | None | Genital System | Clitoral gland | + | + | M | | | | Ι | + | + | + | M | + | | | | | + | + | + | + | - | + + | - | + | + | | Ovary | + | + | + | + | | + | + | + | + | + | + | + | | + - | - | | + | + | + | + | - | + + | + | + | + | | Uterus | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | | + + | + | +
 + | + | - | + + | + | + | + | | Histiocytic sarcoma | | | | | | | | | | | | | | | 2 | ζ. | | | | | | | | | | | | 7 | | |----------------------------------|--------|---|--------|--------|--------|--------|---|---|---|--------|--------|--------|---|---|---|--------|---|---|--------|---|---|---|---|---|--------|--------------------| | Number of Days on Study | 3 | 7
3 | | | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | | 5 | Total | | Carcass ID Number | 3
8 | 9 | 4
0 | 4
5 | 4
6 | 4
9 | 5 | 0 | 0 | 0
4 | 0
5 | 0
8 | | | 1 | 1
5 | 1 | 0 | 2
5 | 6 | 2 | 3 | 4 | | 4
7 | Tissues,
Tumors | | Alimentary System | Esophagus | + | 50 | | Gallbladder | M | + | I | + | + | + | I | + | + | + | + | + | + | + | + | + | + | + | + | + | I | + | I | I | M | 36 | | Intestine large, colon | + | 50 | | Intestine large, rectum | + | 50 | | Intestine large, cecum | + | 48 | | Intestine small, duodenum | + | 48 | | Carcinoma | | | | | | | | | | X | | | | | | | | | | | | | | | | 1 | | Intestine small, jejunum | + | 48 | | Intestine small, ileum | + | 48 | | Liver | + | 50 | | Hepatocellular carcinoma | X | X | 3 | | Hepatocellular adenoma | | | | | Χ | | | | X | | | | | | | | X | | | | | | | | X | 5 | | Hepatocellular adenoma, multiple | | | | | | | | | | X | | | | | | | | | | | | | | | | 1 | | Mesentery | | + | | | | | | | | + | | | | | | | + | | | | | + | | | | 4 | | Pancreas | + | 50 | | Salivary glands | + | 50 | | Stomach, forestomach | + | 50 | | Stomach, glandular | + | 49 | | Tooth | | | | | | | + | | | | | | | + | | + | | | | + | | | | | | 8 | | Cardiovascular System | Heart | + | 50 | | Endocrine System | Adrenal cortex | + | 50 | | Adrenal medulla | + | 49 | | Pheochromocytoma benign | | | | | X | 1 | | Islets, pancreatic | + | 49 | | Parathyroid gland | + | + | + | + | + | + | + | + | + | + | + | | M | | + | + | + | + | + | + | + | + | M | + | + | 35 | | Pituitary gland | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | 49 | | Pars distalis, adenoma | + | 1
50 | | Thyroid gland | + | 30 | | General Body System
None | Genital System | Clitoral gland | + | Ι | + | + | + | + | 44 | | Ovary | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Uterus | + | 50 | | Histiocytic sarcoma | | | | | | | | | | | | | | | X | | | | | | | | | | | 2 | | | 2 | 3 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | , , | , 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | |---|--------|--------|--------|---|---|---|---|--------|-----|------------|-----|---|--------|---|--------|---|--------|---|-----|---|--------|-----|--------|--------| | Number of Days on Study | 3 4 | 5 | 0 | 1 | 3 | 5 | 6 | 7 | 0 0 | | 1 9 | 3 | 3 | 3 | | 3 | | | 3 2 | | 3 2 | 3 2 | 3 | 3 | | | | 5 | | 5 | | | | | | | 5 5 | | | | | | | | 5 | | | | 5 | | | arcass ID Number | 1
7 | 1
9 | 3
7 | 4 | | | | | 2 | | 8 8 | | | | 3
0 | | | | | | 1 2 | | | | | ematopoietic System | one marrow Sarcoma, metastatic, skin ymph node | + | + | + | + | + | + | + | + | | ⊦ +
⊦ | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | ymph node, bronchial | M | + | + | + | M | + | | | + - | + + | + | | + | + | | | | | | | M | | | + | | ymph node, mandibular ymph node, mesenteric | + | + | + | + | + | + | + | | + - | | | + | +
M | + | | + | M
+ | | | | M
+ | | + | | | Lymph node, mediastinal | + | + | + | + | M | + | + | + | + - | + + | + | + | M | + | + | + | + | + | | | + | M | M | M | | pleen
hymus | +
M | + | + | + | | | | A
+ | | + + | | | + | + | | | + | + | + | + | + | | + | | | ntegumentary System | | | | | | | | | 1 | | | | | | | | | | | , | | | | | | ammary gland
kin | + | + | + | + | + | | + | | | - +
- + | | + | + | + | | + | + | + | + | + | + | + | + | + | | Subcutaneous tissue, sarcoma
Subcutaneous tissue, sarcoma,
multiple | | | | | | | X | | | 2 | ζ. | | | | | | | | | | | | | | | Iusculoskeletal System | ne
Osteosarcoma | + | + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | +
X | + | | ervous System | rain
Meningioma benign | + | + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | +
X | | espiratory System | | | | | | | | | 1 | | | | | | | | | | | | | | | | | arynx
Jung | + | + | + | + | + | + | + | + | + - | - 1 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma | | | | | X | | | | 2 | ζ. | , | | | | | | | | | | | | | | | Sarcoma, metastatic, skin Nose | + | + | + | + | + | + | + | + | + - | ∑
⊦ + | | + | + | + | + | + | + | + | + | + | + | + | + | + | | rachea | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | pecial Senses System | ye
larderian gland | + | + | + | + | + | | + | + | | + + | - + | | | | + | | | | + | | | | + | + | | Adenoma
Carcinoma | X | | | | rinary System | | | | | | | | | 1 | | | | | | | | | | | , | | | | | | Cidney
Trinary bladder | + | + | + | + | + | + | + | | | - +
- + | | | + | + | | | + | | + | + | + | + | + | + | | ystemic Lesions | Aultiple organs Histiocytic sarcoma | + | + | + | + | + | + | + | + | + - | + + | - + | + | + | | +
X | + | + | + | + | + | + | + | + | + | | Lymphoma malignant | | | | | | X | | | 2 | ζ. | X | | | X | - | | | | | | | | | | | Nl CD C4 . I | 7 | | |---|--------|--------|---|--------|--------|--------|--------|----|---|--------|--------|--------|----|---|--------|--------|----|---|--------|--------|--------|--------|---|--------|--------|--------------------| | Number of Days on Study | 3 2 | 2 | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 5 | Total | | Carcass ID Number | 3
8 | 3
9 | 4 | 4
5 | 4
6 | 4
9 | 5
0 | 0 | 0 | 0
4 | 0
5 | 0
8 | | 1 | 1 | 1
5 | 1 | 2 | 2
5 | 2
6 | 3 | 3
4 | 4 | 4
4 | 4
7 | Tissues/
Tumors | Hematopoietic System Bone marrow | + | 50 | | Sarcoma, metastatic, skin Lymph node | | | X | Ċ | , | | | | | | | | | | , | | | | , | + | · | · | , | | · | 1 5 | | Lymph node, bronchial | + | M | M | + | M | + | + | + | M | M | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | 39 | | Lymph node, mandibular | + | + | M | + | + | + | + | M | + | M | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | 44 | | Lymph node, mesenteric
Lymph node, mediastinal | + | + | + | + | +
M | +
M | + | + | + | +
M | +
M | + | + | + | + | + | + | + | + | +
M | +
M | + | +
| +
M | + | 49
38 | | Spleen | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Thymus | + | + | + | M | + | 46 | | Integumentary System | Mammary gland
Skin | + | 50
50 | | Subcutaneous tissue, sarcoma | Т | | X | _ | _ | _ | т | Т | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | Т | Т | _ | т | 2 | | Subcutaneous tissue, sarcoma, multiple | 1 | | Musculoskeletal System | Bone
Osteosarcoma | + | 50
1 | | Nervous System | Brain
Meningioma benign | + | 50
1 | | Respiratory System | Larynx | + | 50 | | Lung Alveolar/bronchiolar adenoma | + | X | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | X | + | + | + | 50
4 | | Alveolar/bronchiolar carcinoma | | | | | | | | | X | | | | | | | | X | | | | | | X | | | 4 | | Sarcoma, metastatic, skin | 1 | | Nose
Trachea | + | 50
50 | | Special Senses System | Eye | + | 50 | | Harderian gland
Adenoma | + | + | + | + | + | + | + | + | + | + | + | + | + | + | +
X | + | + | + | +
X | + | + | + | + | + | + | 50
4 | | Carcinoma | | | | | | | | | | | | | | | Λ | Λ | | | Λ | X | | | | | | 1 | | Urinary System | Kidney
Urinary bladder | + | + | + | + | + | + | ++ | ++ | + | ++ | ++ | ++ | ++ | + | + | ++ | ++ | + | ++ | ++ | + | + | + | + | ++ | 50
50 | | • | | | | | | | | | | | , | , | | • | | | | • | | | | | | | | 50 | | Systemic Lesions Multiple organs | + | 50 | | Histiocytic sarcoma | | | | | | | | | | | | | | | X | | | | | | | | | | | 2 | | Lymphoma malignant | Χ | | | | | | 5 | | TABLE | D ₂ | |--------------|----------------| |--------------|----------------| | Number of Days on Study | 2 | 3
8 | | 6
9 | | 7
0 | 7
2 | | 7 | 7
3 | 7 | 7 | 7 | 7
3 | 7 | 7
3 | 7
3 | 7 | 7 | 7 | 7 | 7
3 | 7 | 7
3 | 7
3 | |--|---|--------|--------|--------|---|--------|--------|--------|--------|--------|---|---|---|--------|--------|--------|--------|---|----|--------|---|--------|---|--------|--------| | | 0 | 3 | 7 | 7 | 7 | 4 | 5 | | | | | | | 1 | | | | 2 | 2 | | | 2 | 2 | 2 | 2 | | | 7 | | Carcass ID Number | 6 | 9 | 3 | 3 | 4 | 4
7 | 2 | 3 | 0
4 | | 0 | 1 | 2 | 8 | 4
5 | 0 | 6 | | 5 | 1
6 | 8 | 6 | 7 | 8 | | | Alimentary System | Esophagus | + | | Gallbladder | I | + | Α | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | I | + | + | I | | Intestine large, colon | + | | Intestine large, rectum | + | | Intestine large, cecum | + | | Intestine small, duodenum | + | + | A | + | | Intestine small, jejunum | + | + | A | + | | ntestine small, ileum
Liver | + | + | A
+ | + | + | + | + | + | + | + | + | + | + | + | + | | | + | + | + | + | + | + | + | + | | Hepatocellular carcinoma | + | - | - | - | - | - | - | 7" | ~ | - | 7 | - | - | - | 7 | X | | 7 | 7" | 7" | 7 | - | - | - | 15 | | Hepatocellular adenoma | | | | | | | | | | | | | | | | Λ | | | | | | | Y | Х | | | Hepatocellular adenoma, multiple | Λ | Λ | | | Mesentery | | | | | + | | | | | | | | | | | | | | | | | + | | + | | | Pancreas | + | | Salivary glands | + | | stomach, forestomach | + | | Stomach, glandular | + | + | Α | + | | Cooth | | | | | | | + | | | | | + | + | | | | + | | | + | + | | + | + | | | Cardiovascular System | Heart Carcinoma, metastatic, mammary gland | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Endocrine System | Adrenal cortex | + | | Adrenal medulla | + | | Pheochromocytoma malignant | | | | | | | | | | X | | | | | | | | | | | | | | X | | | slets, pancreatic | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Parathyroid gland | + | + | + | + | | | | | | | | | | M | | | | | | | | | | | | | Pituitary gland | + | + | Α | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | | Pars distalis, adenoma | | | | | | | | | X | | | | | | | | | | | | | | | | | | Гhyroid gland | + | + | Α | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | Ι | + | + | + | + | | General Body System | None | Genital System | Clitoral gland | + | + | I | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | | Ovary | + | + | + | + | + | + | + | + | + | + | + | + | + | + | I | + | + | + | + | + | + | + | + | + | + | | Cystadenoma | Hemangioma | Uterus | + | + | Α | + | | Adenoma | Carcinoma | 7 | | |--|-----|--------|--------|-----|--------|--------|--------|--------|--------|--------|--------|------------|---|---|---|---|--------|--------|---|--------|--------|--------|--------|---|--------|--------------------| | Number of Days on Study | 3 2 | 3 2 | 3 2 | 3 2 | 3 2 | 3 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | 7 | Total | | Carcass ID Number | 3 | 3
2 | 3
5 | 4 | 4
8 | 4
9 | 0
2 | 0
8 | 1
4 | 1
7 | 1
9 | 0 | 2 | 2 | 2 | 5 | 9 | 3 | 3 | 3
6 | 3
7 | 3
9 | 4
0 | 4 | 5
0 | Tissues/
Tumors | | Alimentary System | Esophagus | + | 50 | | Gallbladder
Intestine large, colon | + | 1 | + | 1 | + | + | + | + | + | + | M | + | + | + | + | + | M | + | + | M | + | + | + | + | + | 41
50 | | Intestine large, colon Intestine large, rectum | + | 50 | | Intestine large, rectum | + | 50 | | Intestine small, duodenum | + | 49 | | Intestine small, jejunum | + | 49 | | Intestine small, ileum | + | 49 | | Liver | + | + | + | + | + | + | + | + | + | + | + | + | + | | | + | + | + | + | + | + | + | + | + | + | 50 | | Hepatocellular carcinoma | | | | | | | | | | | | | | | X | | | | | | | | | | | 2 | | Hepatocellular adenoma | | | | | | | | | | X | | | | | | | | 3.7 | | | X | | | | | 4 | | Hepatocellular adenoma, multiple | | | | | | | | | | | | | | | | + | | X
+ | | | | | | | | 1 5 | | Mesentery
Pancreas | + | 50 | | Salivary glands | + | + | + | + | + | + |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Stomach, forestomach | + | 50 | | Stomach, glandular | + | 49 | | Tooth | | | | | | + | + | | | | | | | + | + | | + | | | | | | | + | + | 15 | | Cardiovascular System | Heart | + | 50 | | Carcinoma, metastatic, mammary gland | 1 | | Endocrine System | Adrenal cortex | + | 50 | | Adrenal medulla | + | 50 | | Pheochromocytoma malignant | 2
50 | | Islets, pancreatic Parathyroid gland | + | M | + | + | + | + | + | + | + | + | М | + | + | + | + | + | M | + | + | + | M | + | + | + | + | 39 | | Pituitary gland | + | | + | + | + | + | + | + | + | + | M | | + | | | | | | M | | + | + | + | + | + | 45 | | Pars distalis, adenoma | 1 | | Thyroid gland | + | 48 | | General Body System | None | Genital System | Clitoral gland | I | M | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 45 | | Ovary | + | 49 | | Cystadenoma | | | | | | | | | | | | | | | X | | | | | | | | | | | 1 | | Hemangioma | | | | | | | , | , | | X | , | | | | | | | , | | | | | | | | 1 | | Uterus Adenoma | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | 49 | | Carcinoma | | | | | | | | | | | | X | | | | | Λ | | | | | | | | | 1 | | Polyp stromal | | | | | | | | | | X | | 2 L | | | | | | | | | | | X | | | 2 | | Table D2
Individual Animal Tumor Pathology | of Fe | na | le I | Mic | ce i | n t | he | 2-Y | Yea | ar l | [nh | ala | atio | on S | Stu | dy | of | D i | ivii | nyl | be | nze | ene | -H | P: 100 ppm | |--|-------|----|--------|--------|--------|--------|-----|--------|--------|--------|--------|--------|--------|--------|-----|-----|-----|------------|--------|-----|--------|-----|--------|-----|------------| | | 2 | 3 | 4 | 6 | 6 | 7 | | Number of Days on Study | 0 | 8 | 0
7 | 9
7 | 9
7 | 0
4 | 2 5 | 2
9 | 3
1 | 3
1 | 3
1 | 3
1 | 3
1 | 3
1 | 3 | 3 2 | 3 2 | 3 | 3
2 | 3 2 | 3
2 | 3 2 | 3
2 | 3 2 | 3 2 | | | 7 | | | | | | 7 | 7 | 7 | | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | 7 | 7 | | | 7 | | Carcass ID Number | 4 | 0 | 4 | 0 | 4 | 4 | 1 | 1 | 0 | 0 | 1 | 1 | 2 | 3 | 4 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | • | | | 6 | 9 | 3 | 3 | 4 | 7 | 2 | | | | | | | | 5 | | | | | | | | | | | | Hematopoietic System | Bone marrow | + | | Lymph node | | | | | | + | | + | | | | | | | | | | | | | | | | | | | Renal, carcinoma, metastatic, mammary gland | | | | | | | | X | | | | | | | | | | | | | | | | | | | Lymph node, bronchial | + | | | | | | | | | | | | | | M | | | | | | | + | | | | | Lymph node, mandibular | + | M | | | | + | | | | | | | | | M | | | | | M | + | + | | | | | Lymph node, mesenteric | + | + | + | + | + | + | + | +
X | + | + | 1 | + | + | + | + | + | + | + | + | + | + | + | + | + | т | | Carcinoma, metastatic, mammary gland Lymph node, mediastinal Alveolar/bronchiolar carcinoma, | + | M | + | M | + | + | M | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | M | M | + | | metastatic, lung | Carcinoma, metastatic, mammary gland
Hepatocholangiocarcinoma, metastatic, | | | | | | | | X | | | | | | | | | | | | | | | | | | | liver | Spleen | + | | | | + | | | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Thymus Carcinoma, metastatic, mammary gland | + | M | + | М | М | М | + | +
X | + | + | М | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Integumentary System | Mammary gland | + | + | + | + | + | + | + | | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | | Carcinoma, multiple | | | | | | | | X | | | | | | | | | | | | | | | | | | | Skin Subcutaneous tissue, sarcoma | + | + | + | +
X | | + | | | | | | Λ | Musculoskeletal System | Bone | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Skeletal muscle
Carcinoma, metastatic, mammary gland | | | | | | | | +
X | | | | | | | | | | | | | | | | | | | Nervous System | | | | | | | , | | | | , | , | | , | + | | | | | | | | | | | | Brain | + | Т | | Respiratory System | Larynx | + | + | A | + | | Lung
Alveolar/bronchiolar adenoma | + | + | A | +
X | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | | Alveolar/bronchiolar adenoma, multiple | | | | Λ | | | | | | X | | | | Λ | | | | | | | | | | | | | Alveolar/bronchiolar carcinoma | | | | | | | | X | | Λ | | | X | | | | | | | | | | | | | | Carcinoma, metastatic, mammary gland
Hepatocellular carcinoma, metastatic, | | | | | | | | X | | | | | 21 | | | | | | | | | | | | | | liver | Nose | + | + | A | + | | Olfactory epithelium, neuroblastoma | | | | | | | , | | | | , | , | | | | | | | | | | | X | | | | Trachea | + | | TABLE D2 Individual Animal Tumor Pathology | of Fer | na | le I | Mic | ce i | n t | he | 2-` | Ye | ar | Inl | hal | ati | on | Stı | ıdy | v 01 | f D | ivi | nyl | be | nze | ene | -H | P: | 100 ppm | |---|-----------------------------| | Number of Days on Study | 7
3
2 | 7
3
2 | 7
3
2 | 7
3
2 | 7
3
2 | 7
3
2 | 7
3
3 | | Carcass ID Number | 7
3
1 | 7
3
2 | 7
3
5 | 7
4
2 | 7
4
8 | 7
4
9 | 7
0
2 | 7
0
8 | 7
1
4 | 7
1
7 | 7
1
9 | 7
2
0 | 7
2
1 | 7
2
3 | 7
2
4 | 7
2
5 | 7
2
9 | 7
3
3 | 7
3
4 | 7
3
6 | 7
3
7 | 7
3
9 | 7
4
0 | 7
4
1 | 7
5
0 | Total
Tissues/
Tumors | | Hematopoietic System | Bone marrow Lymph node Renal, carcinoma, metastatic, mammary | + | 50 | | gland | М | | | | | | | | | | | | | | M | 1.1 | | | M | | м | | | | | 1 | | Lymph node, bronchial
Lymph node, mandibular | M
+ | + | т
М | + | + | т
М | + | + | + | + | + | + | + | + | + | M
M | | + | M
+ | + | M
+ | + | + | + | + | 39
41 | | Lymph node, mesenteric | + | 49 | | Carcinoma, metastatic, mammary gland | 1 | | Lymph node, mediastinal Alveolar/bronchiolar carcinoma, | + | + | M | + | + | M | M | + | + | + | M | + | + | + | + | M | + | + | M | + | + | + | + | + | + | 38 | | metastatic, lung
Carcinoma, metastatic, mammary gland
Hepatocholangiocarcinoma, metastatic, | | | | | | | | | | | | | | | X | | | | | | | | | | | 1 | | liver | | | | | | | | | | | | | | | X | | | | | | | | | | | 1 | | Spleen Thymus Carcinoma, metastatic, mammary gland | + | + | + | + | + | + | + | + | + | + | + | + | + | +
M | + | + | + | + | + | + | + | + | + | + | + | 49
44
1 | | Integumentary System | Mammary gland | + | 49 | | Carcinoma, multiple
Skin | + | 1
50 | | Subcutaneous tissue, sarcoma | , | | ' | | | ' | ' | ' | ' | | | | ' | | ' | ' | ' | ' | ' | ' | | ' | ' | ' | | 1 | | Musculoskeletal System | | | | | | | | | | | | |
 | | | | | | | | | | | | 50 | | Bone
Skeletal muscle
Carcinoma, metastatic, mammary gland | + | 50
1
1 | | Nervous System Brain | + | 50 | | | ' | | | | ' | ' | ' | ' | ' | ' | | | ' | | ' | ' | ' | ' | ' | ' | | ' | ' | ' | | 50 | | Respiratory System | 40 | | Larynx
Lung | + | 49
49 | | Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, | , | | | | X | | | | | X | | | | | · | | | | , | · | | X | , | | X | 6 | | multiple Alveolar/bronchiolar carcinoma Carcinoma, metastatic, mammary gland | X | | | | | | | X | | | | | | | X | | | X | | | | | | | | 2
5
1 | | Hepatocellular carcinoma, metastatic, liver | | | | | | | | | | | | | | | X | | | | | | | | | | | 1 | | Nose
Olfactory epithelium, neuroblastoma | + | 49
1 | | Trachea | + | 50 | | TABLE D2
Individual Animal Tumor Pathology | of Fer | na | le I | Иiс | e i | n t | he | 2- | Yea | ar Ì | [nł | ıala | atio | on | Stı | ıdy | o o o o | D | ivi | nyl | be | nze | ene | e-H | P: 1 | 00 ppr | m | |---|--------|----|------|-----|-----|-----|----|----|-----|------|-----|------|------|----|-----|-----|---------|---|-----|-----|----|-----|-----|-----|------|--------|---| | | 2 | 3 | 4 | 6 | 6 | 7 | | | | Number of Days on Study | 0 | 8 | 0 | 9 | 9 | 0 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | | 0 | 3 | 7 | 7 | 7 | 4 | 5 | 9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | | 7 | | _ | | Carcass ID Number | 4 | 0 | 4 | 0 | 4 | 4 | 1 | 1 | 0 | 0 | 1 | 1 | 2 | 3 | 4 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | | | | | 6 | 9 | 3 | 3 | 4 | 7 | 2 | 3 | 4 | 5 | 0 | 1 | 2 | 8 | 5 | 1 | 6 | 7 | 5 | 6 | 8 | 6 | 7 | 8 | 0 | | | | Special Senses System | Eye | + | + | Α | + | | | | Harderian gland | + | | | | Adenoma | | | | | | | X | Carcinoma | | | | | | | | | | | X | | | | | | | | X | | | | | | | | | | Urinary System | Kidney | + | | | | Carcinoma, metastatic, mammary gland | | | | | | | | X | Hepatocellular carcinoma, metastatic, liver | Renal tubule, adenoma | | | | | | | | | | | | | | Х | | | | | | | | | | | | | | | Urinary bladder | + | + | A | + | | | | Systemic Lesions | Multiple organs | + | | | | Lymphoma malignant | Individual Animal Tumor Patholog | y of Fe | ma | le I | Mi | ce i | n t | he | 2-` | Ye | ar | In | hal | ati | on | Stı | udy | y o | f D | ivi | ny! | lbe | nz | en | e-H | P : | 100 ppm | |---------------------------------------|---------|----|------|----|------|-----|----|-----|----|----|----|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|----|----|-----|------------|----------| | | 7 | | | Number of Days on Study | 3 | | | · | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | 7 | Total | | Carcass ID Number | 3 | 3 | 3 | 4 | 4 | 4 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 5 | Tissues/ | | | 1 | 2 | 5 | 2 | 8 | 9 | 2 | 8 | 4 | 7 | 9 | 0 | 1 | 3 | 4 | 5 | 9 | 3 | 4 | 6 | 7 | 9 | 0 | 1 | 0 | Tumors | | Special Senses System | Eye | + | 49 | | Harderian gland | + | 50 | | Adenoma | X | | X | X | | | | | | | | | | | | | | | | | X | | | | | 5 | | Carcinoma | 2 | | Urinary System | Kidney | + | 50 | | Carcinoma, metastatic, mammary gland | 1 | | Hepatocellular carcinoma, metastatic, | liver | | | | | | | | | | | | | | | X | | | | | | | | | | | 1 | | Renal tubule, adenoma | 1 | | Urinary bladder | + | 49 | | Systemic Lesions | Multiple organs | + | 50 | | Lymphoma malignant | | | | | | | | | | | | X | | | | | | | | | | | | | | 1 | TABLE D3 Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |--------------------------------------|------------------------|-------------|------------|------------| | Harderian Gland: Adenoma | | | | | | Overall rate h | 4/50 (8%) | 1/50 (2%) | 4/50 (8%) | 5/50 (10%) | | Adjusted rate b | 9.3% | 2.2% | 9.1% | 10.7% | | Terminal rate | 2/33 (6%) | 1/35 (3%) | 4/38 (11%) | 4/42 (10%) | | First incidence (days) | 596 | 731 (T) | 731 (T) | 725 | | Poly-3 test ^d | P=0.258 | P=0.167N | P=0.634N | P=0.551 | | Harderian Gland: Carcinoma | | | | | | Overall rate | 2/50 (4%) | 4/50 (8%) | 1/50 (2%) | 2/50 (4%) | | Adjusted rate | 4.7% | 8.9% | 2.3% | 4.3% | | Terminal rate | 1/33 (3%) | 4/35 (11%) | 1/38 (3%) | 2/42 (5%) | | First incidence (days) | 687 | 731 (T) | 731 (T) | 731 (T) | | Poly-3 test | P=0.430N | P=0.359 | P=0.491N | P=0.661N | | Harderian Gland: Adenoma or Carcino | oma | | | | | Overall rate | 6/50 (12%) | 5/50 (10%) | 5/50 (10%) | 7/50 (14%) | | Adjusted rate | 13.8% | 11.1% | 11.4% | 14.9% | | Terminal rate | 3/33 (9%) | 5/35 (14%) | 5/38 (13%) | 6/42 (14%) | | First incidence (days) | 596 | 731 (T) | 731 (T) | 725 | | Poly-3 test | P=0.417 | P=0.475N | P=0.491N | P=0.560 | | Liver: Hepatocellular Adenoma | | | | | | Overall rate | 17/49 (35%) | 7/50 (14%) | 6/50 (12%) | 5/50 (10%) | | Adjusted rate | 39.7% | 15.4% | 13.6% | 10.7% | | Terminal rate | 13/33 (39%) | 5/35 (14%) | 5/38 (13%) | 5/42 (12%) | | First incidence (days) | 625 | 537 | 709 | 731 (T) | | Poly-3 test | P=0.010N | P=0.008N | P=0.004N | P<0.001N | | Liver: Hepatocellular Carcinoma | | | | | | Overall rate | 5/49 (10%) | 4/50 (8%) | 3/50 (6%) | 2/50 (4%) | | Adjusted rate | 11.7% | 8.9% | 6.7% | 4.3% | | Terminal rate | 3/33 (9%) | 3/35 (9%) | 2/38 (5%) | 2/42 (5%) | | First incidence (days) | 586 | 719 | 501 | 731 (T) | | Poly-3 test | P=0.162N | P=0.467N | P=0.332N | P=0.180N | | Liver: Hepatocellular Adenoma or Car | cinoma | | | | | Overall rate | 19/49 (39%) | 10/50 (20%) | 8/50 (16%) | 7/50 (14%) | | Adjusted rate | 43.9% | 21.9% | 17.9% | 14.9% | | Terminal rate | 14/33 (42%) | 7/35 (20%) | 6/38 (16%) | 7/42 (17%) | | First incidence (days) | 586 | 537 | 501 | 731 (T) | | Poly-3 test | P=0.012N | P=0.021N | P=0.006N | P=0.002N | | Lung: Alveolar/bronchiolar Adenoma | | | | | | Overall rate | 4/50 (8%) | 9/50 (18%) | 4/50 (8%) | 8/49 (16%) | | Adjusted rate | 9.4% | 20.0% | 9.1% | 17.1% | | Terminal rate | 4/33 (12%) | 9/35 (26%) | 3/38 (8%) | 7/42 (17%) | | First incidence (days) | 731 (T) | 731 (T) | 709 | 697 | | Poly-3 test | P=0.352 | P=0.134 | P=0.626N | P=0.225 | | Lung: Alveolar/bronchiolar Carcinoma | | | | | | Overall rate | 2/50 (4%) | 5/50 (10%) | 4/50 (8%) | 5/49 (10%) | | Adjusted rate | 4.7% | 11.1% | 9.0% | 10.7% | | Terminal rate | 2/33 (6%) | 4/35 (11%) | 3/38 (8%) | 4/42 (10%) | | Terminai rate | | | | | | First incidence (days) | 731 (T) | 719 | 536 | 729 | TABLE D3 Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |------------------------------------|------------------------|-------------|------------|-------------| | Lung: Alveolar/bronchiolar Aden | oma or Carcinoma | | | | | Overall rate | 6/50 (12%) | 12/50 (24%) | 8/50 (16%) | 13/49 (27%) | | Adjusted rate | 14.1% | 26.7% | 17.9% | 27.7% | | Terminal rate | 6/33 (18%) | 11/35 (31%) | 6/38 (16%) | 11/42 (26%) | | First incidence (days) | 731 (T) | 719 | 536 | 697 | | Poly-3 test | P=0.161 | P=0.114 | P=0.421 | P=0.092 | | Ovary: Cystadenoma | | | | | | Overall rate | 3/48 (6%) | 0/50 (0%)
 0/49 (0%) | 1/49 (2%) | | Adjusted rate | 7.3% | 0.0% | 0.0% | 2.2% | | Terminal rate | 3/33 (9%) | 0/35 (0%) | 0/37 (0%) | 1/41 (2%) | | First incidence (days) | 731 (T) | e | _ ` ´ | 731 (T) | | Poly-3 test | P=0.475N | P=0.102N | P=0.110N | P=0.265N | | Pituitary Gland (Pars Distalis): A | denoma | | | | | Overall rate | 8/47 (17%) | 8/50 (16%) | 1/49 (2%) | 1/45 (2%) | | Adjusted rate | 19.8% | 17.7% | 2.3% | 2.3% | | Terminal rate | 6/31 (19%) | 6/35 (17%) | 1/37 (3%) | 1/38 (3%) | | First incidence (days) | 596 | 693 | 731 (T) | 731 (T) | | Poly-3 test | P=0.005N | P=0.511N | P=0.011N | P=0.012N | | Skin (Subcutaneous): Sarcoma | | | | | | Overall rate | 1/50 (2%) | 2/50 (4%) | 3/50 (6%) | 1/50 (2%) | | Adjusted rate | 2.3% | 4.4% | 6.7% | 2.1% | | Ferminal rate | 0/33 (0%) | 0/35 (0%) | 1/38 (3%) | 0/42 (0%) | | First incidence (days) | 450 | 506 | 564 | 697 | | Poly-3 test | P=0.469N | P=0.520 | P=0.314 | P=0.743N | | Spleen: Hemangiosarcoma | | | | | | Overall rate | 0/49 (0%) | 3/50 (6%) | 0/49 (0%) | 0/49 (0%) | | Adjusted rate | 0.0% | 6.6% | 0.0% | 0.0% | | Ferminal rate | 0/33 (0%) | 2/35 (6%) | 0/38 (0%) | 0/42 (0%) | | First incidence (days) | _ ` ´ | 656 | | _ ` ´ | | Poly-3 test | P=0.246N | P=0.133 | f | _ | | Uterus: Stromal Polyp | | | | | | Overall rate | 1/50 (2%) | 3/50 (6%) | 0/50 (0%) | 2/50 (4%) | | Adjusted rate | 2.3% | 6.7% | 0.0% | 4.3% | | Terminal rate | 1/33 (3%) | 3/35 (9%) | 0/38 (0%) | 2/42 (5%) | | First incidence (days) | 731 (T) | 731 (T) | _ ` ` | 731 (T) | | Poly-3 test | P=0.596 | P=0.324 | P=0.494N | P=0.533 | | All Organs: Hemangiosarcoma | | | | | | Overall rate | 1/50 (2%) | 3/50 (6%) | 0/50 (0%) | 0/50 (0%) | | Adjusted rate | 2.3% | 6.6% | 0.0% | 0.0% | | Terminal rate | 0/33 (0%) | 2/35 (6%) | 0/38 (0%) | 0/42 (0%) | | First incidence (days) | 711 | 656 | _ | _ | | Poly-3 test | P=0.149N | P=0.326 | P=0.495N | P=0.482N | | All Organs: Hemangioma or Hem | angiosarcoma | | | | | Overall rate | 2/50 (4%) | 3/50 (6%) | 0/50 (0%) | 1/50 (2%) | | Adjusted rate | 4.7% | 6.6% | 0.0% | 2.1% | | Terminal rate | 0/33 (0%) | 2/35 (6%) | 0/38 (0%) | 1/42 (2%) | | First incidence (days) | 709 | 656 | | 731 (T) | | Poly-3 test | P=0.296N | P=0.525 | P=0.231N | P=0.469N | TABLE D3 Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |-----------------------------------|------------------------|-------------|-------------|-------------| | All Organs: Malignant Lymphoma | 1 | | | | | Overall rate | 11/50 (22%) | 10/50 (20%) | 5/50 (10%) | 1/50 (2%) | | Adjusted rate | 24.6% | 21.4% | 11.2% | 2.1% | | Terminal rate | 5/33 (15%) | 5/35 (14%) | 2/38 (5%) | 1/42 (2%) | | First incidence (days) | 386 | 550 | 550 | 731 (T) | | Poly-3 test | P<0.001N | P=0.456N | P=0.083N | P<0.001N | | All Organs: Benign Neoplasms | | | | | | Overall rate | 28/50 (56%) | 21/50 (42%) | 14/50 (28%) | 19/50 (38%) | | Adjusted rate | 63.4% | 45.8% | 31.8% | 40.4% | | Terminal rate | 22/33 (67%) | 17/35 (49%) | 13/38 (34%) | 17/42 (41%) | | First incidence (days) | 596 | 537 | 709 | 697 | | Poly-3 test | P=0.077N | P=0.066N | P=0.002N | P=0.020N | | All Organs: Malignant Neoplasms | | | | | | Overall rate | 22/50 (44%) | 29/50 (58%) | 19/50 (38%) | 13/50 (26%) | | Adjusted rate | 46.8% | 59.0% | 40.8% | 27.6% | | Terminal rate | 10/33 (30%) | 18/35 (51%) | 12/38 (32%) | 11/42 (26%) | | First incidence (days) | 386 | 506 | 501 | 697 | | Poly-3 test | P=0.004N | P=0.158 | P=0.352N | P=0.041N | | All Organs: Benign or Malignant I | Neoplasms | | | | | Overall rate | 40/50 (80%) | 40/50 (80%) | 26/50 (52%) | 26/50 (52%) | | Adjusted rate | 84.3% | 80.0% | 55.8% | 55.2% | | Terminal rate | 27/33 (82%) | 25/35 (71%) | 19/38 (50%) | 23/42 (55%) | | First incidence (days) | 386 | 506 | 501 | 697 | | Poly-3 test | P<0.001N | P=0.387N | P=0.002N | P<0.001N | ⁽T) Terminal sacrifice Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for liver, lung, ovary, pituitary gland, and spleen; for other tissues, denominator is number of animals necropsied. Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality C. Observed incidence at terminal kill Beneath the chamber control incidence is the P value associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the chamber controls and that exposed group. The Poly-3 test accounts for the differential mortality in animals that do not reach terminal sacrifice. A negative trend or a lower incidence in an exposed group is indicated by N. Not applicable; no neoplasms in animal group Value of statistic cannot be computed. TABLE D4 Historical Incidence of Alveolar/bronchiolar Neoplasms in Control Female B6C3F₁ Mice^a | | | Incidence in Control | S | |--|-------------------|----------------------|-------------------------| | Study | Adenoma | Carcinoma | Adenoma
or Carcinoma | | Historical Incidence: Inhalation Studies | | | | | Decalin | 1/49 | 6/49 | 7/49 | | Divinylbenzene | 4/50 | 2/50 | 6/50 | | Indium phosphide | 3/50 | 1/50 | 4/50 | | Methyl isobutyl ketone | 4/50 | 0/50 | 4/50 | | Propylene glycol mono-t-butyl ether | 2/50 | 1/50 | 3/50 | | Stoddard solvent IIC | 2/50 | 0/50 | 2/50 | | Vanadium pentoxide | 1/50 | 0/50 | 1/50 | | Overall Historical Incidence: Inhalation Studies | | | | | Total (%) | 17/349 (4.9%) | 10/349 (2.9%) | 27/349 (7.7%) | | Mean ± standard deviation | $4.9\% \pm 2.5\%$ | $2.9\% \pm 4.4\%$ | $7.8\% \pm 4.3\%$ | | Range | 2%-8% | 0%-12% | 2%-14% | | Overall Historical Incidence: All Routes | | | | | Total (%) | 80/1,552 (5.2%) | 40/1,552 (2.6%) | 117/1,552 (7.5%) | | Mean ± standard deviation | $5.1\% \pm 3.5\%$ | $2.5\% \pm 2.6\%$ | $7.4\% \pm 3.8\%$ | | Range | 0%-12% | 0%-12% | 0%-14% | ^a Data as of January 28, 2005 $\begin{tabular}{ll} Table D5 \\ Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP$^a \\ \end{tabular}$ | | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |--------------------------------------|------------------------|-----------|----------|-----------| | Disposition Summary | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Early deaths | 30 | 50 | 30 | 50 | | Accidental death | | | 1 | | | Moribund | 11 | 12 | 8 | 7 | | | 11 | | | 7 | | Natural deaths | 6 | 3 | 3 | 1 | | Survivors | | | | | | Terminal sacrifice | 33 | 35 | 38 | 42 | | Animals examined microscopically | 50 | 50 | 50 | 50 | | Alimentary System | | | | | | Esophagus | (50) | (50) | (50) | (50) | | Infiltration cellular, mixed cell | ` ' | ` ' | | 1 (2%) | | Gallbladder | (45) | (41) | (36) | (41) | | Hemorrhage, chronic | 1 (2%) | ` / | (/ | ` / | | Inflammation, acute | - (2/0) | | 1 (3%) | | | Inflammation, chronic | | | - (3/0) | 1 (2%) | | Intestine large, rectum | (46) | (48) | (50) | (50) | | Artery, inflammation, chronic active | 1 (2%) | (10) | (30) | (50) | | Liver | (49) | (50) | (50) | (50) | | Angiectasis | 1 (2%) | (50) | (30) | (30) | | | | 2 (40/) | | 2 (40/) | | Basophilic focus | 4 (8%) | 2 (4%) | 2 ((0)) | 2 (4%) | | Clear cell focus | 4 (8%) | 2 (4%) | 3 (6%) | 4 (00/) | | Eosinophilic focus | 12 (24%) | 8 (16%) | 3 (6%) | 4 (8%) | | Fatty change | 2 (4%) | 1 (2%) | | | | Hematopoietic cell proliferation | | 1 (2%) | 1 (2%) | 1 (2%) | | Infarct | | 1 (2%) | | | | Inflammation, acute | | | 1 (2%) | | | Inflammation, chronic | | | | 1 (2%) | | Inflammation, granulomatous | 1 (2%) | | 1 (2%) | | | Mixed cell focus | , | | , | 1 (2%) | | Necrosis | 1 (2%) | | 3 (6%) | 1 (2%) | | Tension lipidosis | 1 (2%) | 5 (10%) | 2 (4%) | 4 (8%) | | Vacuolization cytoplasmic, focal | 1 (270) | 2 (20/0) | - (1/0) | 1 (2%) | | Centrilobular, hypertrophy | 1 (2%) | | | 1 (2/0) | | Mesentery | (17) | (16) | (4) | (5) | | | | (10) | (ד) | (3) | | Artery, inflammation, chronic active | 1 (6%) | 1 (60/) | | | | Fat, congestion | | 1 (6%) | 1 (250/) | | | Fat, hemorrhage | 17 (1000/) | 15 (040/) | 1 (25%) | E (1000/) | | Fat, necrosis | 17 (100%) | 15 (94%) | 3 (75%) | 5 (100%) | | Pancreas | (48) | (50) | (50) | (50) | | Atrophy | | 2 (4%) | 1 (2%) | | | Basophilic focus | | | 1 (2%) | | | Duct, cyst | | | 2 (4%) | | | Stomach, forestomach | (50) | (50) | (50) | (50) | | Hyperplasia, squamous | 3 (6%) | 5 (10%) | | 1 (2%) | | Inflammation, chronic active | 1 (2%) | | | 2 (4%) | | Ulcer | | 1 (2%) | 1 (2%) | | | Stomach, glandular | (49) | (50) | (49) | (49) | | Hemorrhage | ` / | 1 (2%) | ` / | ` / | | Necrosis | 1 (2%) | 1 (2/0) | | | | Tooth | (9) | (13) | (8) | (15) | | Incisor, dysplasia | 9 (100%) | 13 (100%) | 8 (100%) | 15 (100%) | | meisor, uyspiasia | 9 (100%) | 13 (100%) | 0 (100%) | 15 (100%) | ^a Number of animals examined microscopically at the site and the number of animals with lesion TABLE D5 Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |--|------------------------|----------------|----------|----------| | Cardiovascular System | | | | | | Blood vessel | (1) | | | | | Aorta, mineralization | 1 (100%) | | | | | Heart | (50) | (50) | (50) | (50) | | Cardiomyopathy | 3 (6%) | 6 (12%) | 1 (2%) | 1 (2%) | | Infiltration cellular, polymorphonuclear | 3 (0/0) | 0 (1270) | 1 (2%) | 1 (270) | | Inflammation, suppurative | | 1 (2%) | 1 (270) | | | Mineralization | 1 (2%) | 1 (2%) | | 1 (2%) | | Necrosis | 1 (2/0) | 1 (270) | 1 (2%) | 1 (270) | | Thrombosis | | 1 (2%) | 1 (270) | | | Artery, inflammation, chronic active | 2 (4%) | 1 (270) | | | | | - (, , ,) | | | | | Endocrine System | (-0) | ,· | 4-0 | | | Adrenal cortex | (50) | (50) | (50) | (50) | | Hematopoietic cell proliferation | | 1
(2%) | - 4440 | | | Hyperplasia | 1 (2%) | 2 (4%) | 5 (10%) | 4 (8%) | | Hypertrophy | | 3 (6%) | 2 (4%) | 8 (16%) | | Adrenal medulla | (49) | (50) | (49) | (50) | | Hyperplasia | 1 (2%) | 1 (2%) | | 2 (4%) | | Necrosis | 1 (2%) | | | | | Islets, pancreatic | (48) | (49) | (49) | (50) | | Hyperplasia | | | 1 (2%) | | | Pituitary gland | (47) | (50) | (49) | (45) | | Cyst | | | | 1 (2%) | | Pars distalis, angiectasis | 3 (6%) | | | | | Pars distalis, hyperplasia | 8 (17%) | 16 (32%) | 6 (12%) | 5 (11%) | | Thyroid gland | (49) | (49) | (50) | (48) | | C-cell, hyperplasia | | 1 (2%) | | | | Follicular cell, hyperplasia | 1 (2%) | 2 (4%) | | 1 (2%) | | General Body System None | | | | | | Genital System | | | | | | | (48) | (50) | (40) | (40) | | Ovary Angiectasis | (48)
2 (4%) | (50)
3 (6%) | (49) | (49) | | e e | 2 (4%)
9 (19%) | () | 10 (20%) | 0 (1997) | | Cyst
Inflammation, acute | 9 (19%) | 14 (28%) | ` / | 9 (18%) | | · · · · · · · · · · · · · · · · · · · | 1 (20/) | | 1 (2%) | | | Mineralization Necrosis | 1 (2%) | | 1 (20/) | | | | | | 1 (2%) | 1 (20/) | | Thrombosis | (40) | (50) | (50) | 1 (2%) | | Uterus | (49) | (50) | (50) | (49) | | Angiectasis | 2 (40/) | 1 (2%) | 2 (4%) | 1 (2%) | | Endometrium, hyperplasia, cystic | 2 (4%) | 8 (16%) | 5 (10%) | 8 (16%) | TABLE D5 Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |--|------------------------|--------|---------|---------| | Hematopoietic System | | | | | | Lymph node | (9) | (3) | (5) | (2) | | Ectasia | 1 (11%) | | | | | Deep cervical, hyperplasia, lymphoid | 1 (11%) | | | | | Deep cervical, infiltration cellular, plasma cel | 1 | | | 1 (50%) | | Iliac, angiectasis | | | | 1 (50%) | | Iliac, ectasia | 1 (11%) | | | | | Lumbar, angiectasis | | | 1 (20%) | | | Renal, angiectasis | | | 1 (20%) | | | Lymph node, mesenteric | (49) | (50) | (49) | (49) | | Angiectasis | 1 (2%) | | | | | Ectasia | | | 1 (2%) | | | Inflammation, granulomatous | | 1 (2%) | | | | Spleen | (49) | (50) | (49) | (49) | | Hematopoietic cell proliferation | 3 (6%) | 3 (6%) | 3 (6%) | 1 (2%) | | Inflammation, acute | | | 1 (2%) | | | Necrosis | | | 1 (2%) | | | Sinusoid, dilatation | | | | 1 (2%) | | Integumentary System | | | | | | Skin | (50) | (50) | (50) | (50) | | Inflammation, chronic active | 3 (6%) | 2 (4%) | () | 1 (2%) | | Musculoskeletal System | . , | . , , | | . , | | None | | | | | | Nervous System | | | | | | Brain | (50) | (50) | (50) | (50) | | Degeneration, focal | V -7 | · · / | () | 1 (2%) | | Hemorrhage | | 1 (2%) | | - (-,*) | | Meninges, infiltration cellular, mononuclear c | ell 1 (2%) | 1 (2%) | | | TABLE D5 Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Inhalation Study of Divinylbenzene-HP | | Chamber Control | 10 ppm | 30 ppm | 100 ppm | |--|------------------------|----------------------|-----------|-----------| | Respiratory System | | | | | | Larynx | (48) | (50) | (50) | (49) | | Hyperplasia, squamous | (10) | (00) | (50) | 1 (2%) | | Inflammation, suppurative | | 1 (2%) | | 1 (2%) | | Lung | (50) | (50) | (50) | (49) | | Hemorrhage | 1 (2%) | (00) | (50) | (.>) | | Infiltration cellular, polymorphonuclear | 1 (2/0) | | 1 (2%) | | | Inflammation, acute | | | 1 (2%) | | | Thrombosis | | | 1 (2%) | | | Alveolar epithelium, hyperplasia | 4 (8%) | 3 (6%) | 4 (8%) | 8 (16%) | | Alveolus, granuloma | 1 (070) | 3 (070) | 1 (2%) | 0 (1070) | | Alveolus, infiltration cellular, histiocyte | 3 (6%) | 6 (12%) | 9 (18%) | 17 (35%) | | Bronchiole, hyperplasia | 3 (070) | 0 (1270) |) (1870) | 1 (2%) | | Bronchiole, hyperplasia, atypical | | 39 (78%) | 45 (90%) | 48 (98%) | | Nose | (50) | (50) | (50) | (49) | | | ` / | ` ' | ` ' | | | Inflammation, suppurative | 1 (2%) | 50 (100%) | 49 (98%) | 49 (100%) | | Glands, respiratory epithelium, metaplasia | 3 (6%) | 50 (100%) | 50 (100%) | 49 (100%) | | Olfactory epithelium, atrophy | 8 (16%) | E0 (1000/) | 40 (000/) | 0 (1(0/) | | Olfactory epithelium, degeneration, hyaline | 2 (4%) | 50 (100%) | 40 (80%) | 8 (16%) | | Olfactory epithelium, respiratory epithelium, | | 50 /4 0 0 0 1 | | 40 /4000 | | metaplasia | (40) | 50 (100%) | 50 (100%) | 49 (100%) | | Гrachea | (49) | (50) | (50) | (50) | | Inflammation, suppurative | | 1 (2%) | | | | Special Senses System | | | | | | Eye | (50) | (50) | (50) | (49) | | Cataract | 1 (2%) | 2 (4%) | (50) | 1 (2%) | | Inflammation | 1 (270) | 2 (170) | | 1 (2%) | | Phthisis bulbi | 1 (2%) | 1 (2%) | | 1 (270) | | Cornea, hyperplasia, squamous | 1 (270) | 1 (270) | 1 (2%) | | | Cornea, inflammation, chronic active | 1 (2%) | 3 (6%) | 1 (270) | 3 (6%) | | Cornea, inflammation, suppurative | 1 (270) | 3 (070) | | 1 (2%) | | Cornea, mineralization | | | | 6 (12%) | | Harderian gland | (50) | (50) | (50) | (50) | | | ` / | | | ` / | | Hyperplasia Inflammation, chronic active | 1 (2%) | 4 (8%) | 2 (4%) | 3 (6%) | | ппаншанон, споше асиче | 1 (2%) | | | | | Urinary System | | | | | | Kidney | (49) | (50) | (50) | (50) | | Amyloid deposition | () | 1 (2%) | (50) | (00) | | Infarct | | 1 (2/0) | 1 (2%) | | | Inflammation, suppurative | | 2 (4%) | 2 (4%) | | | Metaplasia, osseous | 2 (4%) | 3 (6%) | 3 (6%) | 1 (2%) | | Mineralization | | 5 (070) | 3 (070) | 1 (270) | | | 1 (2%) | 21 (620/) | 22 (440/) | 17 (240/) | | Nephropathy | 25 (51%) | 31 (62%) | 22 (44%) | 17 (34%) | | Artery, inflammation, chronic active | (40) | (50) | (50) | 1 (2%) | | Urinary bladder | (49) | (50) | (50) | (49) | | Inflammation, suppurative Artery, inflammation, chronic active | 4 (00.00 | | 1 (2%) | | | | 1 (2%) | | | | ## APPENDIX E GENETIC TOXICOLOGY | Salmonell | A TYPHIMURIUM MUTAGENICITY TEST PROTOCOL | E-2 | |-----------|--|-----| | Mouse Per | RIPHERAL BLOOD MICRONUCLEUS TEST PROTOCOL | E-2 | | Evaluatio | N PROTOCOL | E-3 | | RESULTS | | E-3 | | TABLE E1 | Mutagenicity of Divinylbenzene in Salmonella typhimurium | E-4 | | TABLE E2 | Mutagenicity of Divinylbenzene-HP (80%) in Salmonella typhimurium | E-7 | | TABLE E3 | Frequency of Micronuclei in Normochromatic Erythrocytes | | | | and Percent Polychromatic Erythrocytes in Peripheral Blood of Mice | | | | Following Exposure to Divinylbenzene-HP by Inhalation for 3 Months | E-8 | ### **GENETIC TOXICOLOGY** ### SALMONELLA TYPHIMURIUM MUTAGENICITY TEST PROTOCOL Three independent mutagenicity assays were conducted with divinylbenzene. Testing was performed for the first two assays with divinylbenzene of unknown purity as reported by Zeiger *et al.* (1987). The third assay, conducted with the same lot of divinylbenzene (80%) tested in the 2-year study, used a slightly modified protocol (activation only with rat liver S9) and also employed *Escherichia coli* strain WP2 uvrA pKM101 as a bacterial tester strain in addition to *Salmonella typhimurium* strains. Divinylbenzene was sent to the laboratories as a coded aliquot from Radian Corporation (Austin, TX). It was incubated with the *Salmonella typhimurium* tester strains TA97, TA98, TA100, TA1535, and TA1537 and with the *E. coli* tester strain either in buffer or S9 mix (metabolic activation enzymes and cofactors from Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver) for 20 minutes at 37° C. Top agar supplemented with L-histidine and d-biotin was added, and the contents of the tubes were mixed and poured onto the surfaces of minimal glucose agar plates. Histidine-independent mutant colonies arising on these plates were counted following incubation for 2 days at 37° C. Each trial consisted of triplicate plates of concurrent positive and negative controls and five doses of divinylbenzene. The high dose was limited by toxicity. All trials were repeated at the same or a higher S9 fraction. In this assay, a positive response is defined as a reproducible, dose-related increase in histidine-independent (revertant) colonies in any one strain/activation combination. An equivocal response is defined as an increase in revertants that is not dose-related, is not reproducible, or is not of sufficient magnitude to support a determination of mutagenicity. A negative response is obtained when no increase in revertant colonies is observed following chemical treatment. There is no minimum percentage or fold increase required for a chemical to be judged positive or weakly positive. ### MOUSE PERIPHERAL BLOOD MICRONUCLEUS TEST PROTOCOL A detailed discussion of this assay is presented by MacGregor *et al.* (1990). At the end of the 3-month toxicity study, peripheral blood samples were obtained from male and female mice. Smears were immediately prepared and fixed in absolute methanol. The methanol-fixed slides were stained with acridine orange and coded. Slides were scanned to determine the frequency of micronuclei in 2,000 normochromatic erythrocytes (NCEs) in each of 10 animals per exposure group. In addition, the percentage of polychromatic erythrocytes (PCEs) in a population of 1,000 erythrocytes was determined as a measure of bone marrow toxicity. The results were tabulated as the mean of the pooled results from all animals within an exposure group plus or minus the standard error of the mean. The frequency of micronucleated cells among NCEs was analyzed by a statistical software package that tested for increasing trend over exposure groups with a one-tailed Cochran-Armitage trend test, followed by pairwise comparisons between each exposure group and the control group (ILS, 1990). In the presence of excess binomial variation, as detected by a binomial dispersion test, the binomial variance of the Cochran-Armitage test was adjusted upward in proportion to the excess variation. In the micronucleus test, an individual trial is considered positive if the
trend test P value is less than or equal to 0.025 or if the P value for any single exposed group is less than or equal to 0.025 divided by the number of exposed groups. A final call of positive for micronucleus induction is preferably based on reproducibly positive trials (as noted above). Results of the 3-month study were accepted without repeat tests, because additional test data could not be obtained. Ultimately, the final call is determined by the scientific staff after considering the results of statistical analyses, the reproducibility of any effects observed, and the magnitudes of those effects. #### EVALUATION PROTOCOL These are the basic guidelines for arriving at an overall assay result for assays performed by the National Toxicology Program. Statistical as well as biological factors are considered. For an individual assay, the statistical procedures for data analysis have been described in the preceding protocols. There have been instances, however, in which multiple aliquots of a chemical were tested in the same assay, and different results were obtained among aliquots and/or among laboratories. Results from more than one aliquot or from more than one laboratory are not simply combined into an overall result. Rather, all the data are critically evaluated, particularly with regard to pertinent protocol variations, in determining the weight of evidence for an overall conclusion of chemical activity in an assay. In addition to multiple aliquots, the *in vitro* assays have another variable that must be considered in arriving at an overall test result. *In vitro* assays are conducted with and without exogenous metabolic activation. Results obtained in the absence of activation are not combined with results obtained in the presence of activation; each testing condition is evaluated separately. The summary table in the Abstract of this Technical Report presents a result that represents a scientific judgement of the overall evidence for activity of the chemical in an assay. ### RESULTS Divinylbenzene was not mutagenic in *S. typhimurium* strains TA97, TA98, TA100, TA1535, or TA1537 or the *E. coli* tester strain WP2 uvrA when tested with and without induced hamster or rat liver S9 in any of three independently conducted assays (Tables E1 and E2; Zeiger *et al.*, 1987). The highest concentration tested at one laboratory was 100 µg/plate; the other two laboratories tested higher concentrations, up to 1,000 µg/plate. It should be considered that inadequate exposure of the tester strains may have occurred, as incubation with this volatile compound was not carried out within the closed environment of a desiccator. No increases in the frequencies of micronucleated NCEs or alterations in the percentages of PCEs were seen in peripheral blood of male or female B6C3F₁ mice exposed to divinylbenzene by inhalation for 3 months (Table E2). TABLE E1 Mutagenicity of Divinylbenzene in Salmonella typhimurium^a | Strain (µg/plate) Dose (µg/plate) −S9 ± + hamster S9 ± + tat S9 ± + tat S9 Study performed at BioReliance Corporation TA100 0 123 ± 3.7 129 ± 3.8 118 ± 6.2 122 ± 4.0 134 ± 6.6 115 ± 5.5 0.3 120 ± 10.4 117 ± 4.0 1 137 ± 3.8 112 ± 5.7 103 ± 10.0 104 ± 8.3 119 ± 5.8 116 ± 7.5 3.3 135 ± 6.7 124 ± 6.3 132 ± 1.9 102 ± 8.4 128 ± 4.3 102 ± 9.8 10 127 ± 3.3 108 ± 6.8 112 ± 10.0 155 ± 7.6 147 ± 9.3 112 ± 5.5 100 ± 10.0 100 ± 126 ± 3.3 120 ± 3.0 100 10 127 ± 3.3 108 ± 6.8 112 ± 10.5 119 ± 9.3 126 ± 3.5 120 ± 3.0 100 10 127 ± 3.3 3 ± 12.5 ± 4.7° 114 ± 11.8° 112 ± 10.5 119 ± 9.3 126 ± 3.5 120 ± 3.0 100 ± 5.0 Trial summary Positive control 1.293 ± 27.1 1,434 ± 27.9 1,022 ± 8.5 1,017 ± 49.6 969 ± 21.7 702 ± 5.8 TA1535 0 35 ± 2.4 36 ± 0.9 10 ± 0.9 14 ± 0.6 16 ± 1.2 15 ± 2.2 3.3 34 ± 3.0 40 ± 2.3 9 ± 0.7 21 ± 1.7 15 ± 1.3 19 ± 1.5 10 30 ± 3.8 30 ± 0.7 14 ± 0.9 18 ± 2.6 15 ± 2.6 16 ± 1.9 33 29 ± 1.2° 37 ± 3.3° 13 ± 1.2 15 ± 1.9 13 ± 2.6 12 ± 0.6 16 ± 1.9 33 29 ± 1.2° 37 ± 3.3° 13 ± 1.2 15 ± 1.9 13 ± 2.6 12 ± 0.6 16 ± 1.9 13 ± 2.6 16 ± 1.8 10 10 10 10 ± 1.2 117 ± 6.6 131 ± 1.2 185 ± 9.3 145 ± 11.7 211 ± 12.7 1.5 ± 1.3 10 ± 1.5 ± 1.5 10 10 8.5 ± 3.3 10 ± 5.8° 10 ± 3.3 10 ± 5.8° 10 ± 3.3 10 ± 5.8° 10 ± 3.3 10 ± 5.8° 10 ± 3.3 10 ± 5.8° 10 ± 3.3 10 ± 5.8° 10 ± 3.2 ± 3.3 10 ± 5.8° 10 ± 3.2 ± 3.3 10 ± 5.8° 10 ± 3.2 ± 3.3 10 ± 5.8° 10 ± 3.2 ± 3.3 10 ± 5.8° 10 ± 3.2 ± 3.3 10 ± 5.8° 10 ± 3.2 ± 3.3 10 ± 5.8° 10 ± 3.2 ± 3.3 10 ± 5.8° 10 ± 3.2 ± 3.3 10 ± 5.8° 10 ± 3.2 ± 3.3 10 ± 5.8° 10 ± 3.2 ± 3.2 ± 3.3 10 ± 5.8° 10 ± 3.2 ± 3.2 ± 3.3 10 ± 5.8° 10 ± 3.2 ± 3.2 ± 3.3 10 ± 5.8° 10 ± 3.2 ± 3.2 ± 3.2 ± 3.2 ± 3.2 ± 3.2 ± 3.2 ± 3.2 ± 3.2 ± 3.2 ± 3.2 ± 3.2 ± 3.2 ± 3. | | | | | Revertan | ts/Plate ^b | | | |---|-------------|---|-----------------------|-------------------|-----------------------|-----------------------|-------------------------|---------------------| | Study performed at BioReliance Corporation | Strain | Dose | | S9 | +hamst | ter S9 | +rat | <u>S9</u> | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | (μg/plate) | Trial 1 | Trial 2 | 10% | 30% | 10% | 30% | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Study p | erformed a | t BioReliance (| Corporation | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | TA100 | 0 | 123 + 3.7 | 120 + 3 8 | 118 + 6.2 | 122 + 4.0 | 134 + 6.6 | 115 + 5 5 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | IAIUU | | | | 110 ± 0.2 | 122 ± 4.0 | 134 ± 0.0 | 113 ± 3.3 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | 103 ± 10.0 | 104 ± 9.3 | 110 + 5 8 | 116 ± 7.5 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | Trial summary Positive control Positive Control Positive Control Positive Control Positive Control Positive Positive Control Positive Positive Control Positive Positive Positive Control Positive Po | | | | 108 ± 0.8 | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 125 ± 4.7 | 114 ± 11.8 | 112 ± 10.5 | | 126 ± 3.5 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 100 | | | 112 ± 10.2 | 100 ± 10.2 | 126 ± 3.3 | 105 ± 5.0 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Trial sun | nmary | Negative | Negative | Negative | Negative | Negative | Negative | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Positive of | control | - | | - | - | - | - | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1 OSILIVE | control | 1,275 = 27.1 | 1,454 = 27.5 | 1,022 ± 0.5 | 1,017 = 47.0 | 707 = 21.7 | 702 ± 3.0 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | TA1535 | 5 0 | 35 ± 2.4 | 36 ± 0.9 | 10 ± 0.9 | 14 ± 0.6 | 16 ± 1.2 | 15 ± 2.2 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 0.3 | 28 ± 3.4 | 33 ± 5.5 | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 1 | 30 ± 3.4 | 33 ± 1.2 | 12 ± 4.0 | 12 ± 2.5 | 16 ± 2.6 | 20 ± 2.2 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 3.3 | 34 ± 3.0 | 40 ± 2.3 | 9 ± 0.7 | 21 ± 1.7 | 15 ± 1.3 | 19 ± 1.5 | | Trial summary Negative Negative Negative Negative Negative Negative Negative control 988 \pm 3.7 1,053 \pm 31.3 110 \pm 4.4 247 \pm 12.3 136 \pm 9.1 167 \pm 15.2 TA97 0 105 \pm 1.2 117 \pm 6.6 131 \pm 1.2 185 \pm 9.3 145 \pm 11.7 211 \pm 12.7 0.3 114 \pm 4.8 111 \pm 8.2 1 92 \pm 5.0 95 \pm 5.0 120 \pm 9.6 200 \pm 7.0 170 \pm 6.2 225 \pm 3.8 3.3 92 \pm 1.2
95 \pm 1.5 128 \pm 3.9 206 \pm 5.2 171 \pm 8.9 228 \pm 10.1 10 86 \pm 9.3 99 \pm 3.8 136 \pm 10.1 179 \pm 13.1 160 \pm 4.3 201 \pm 3.5 33 101 \pm 5.8 100 \pm 3.2 131 \pm 4.7 215 \pm 8.4 180 \pm 4.2 222 \pm 14.5 129 \pm 6.1 299 \pm 6.1 208 \pm 2.3 147 \pm 8.2 192 \pm 5.8 192 \pm 5.8 193 \pm 4.9 194 \pm 5.9 194 \pm 5.9 194 \pm 5.9 195 \pm 5.0 5. | | 10 | 30 ± 3.8 | 30 ± 0.7 | 14 ± 0.9 | 18 ± 2.6 | 15 ± 2.6 | 16 ± 1.9 | | Trial summary Negative Negative Negative Negative Negative Negative Negative control 988 \pm 3.7 1,053 \pm 31.3 110 \pm 4.4 247 \pm 12.3 136 \pm 9.1 167 \pm 15.2 TA97 0 105 \pm 1.2 117 \pm 6.6 131 \pm 1.2 185 \pm 9.3 145 \pm 11.7 211 \pm 12.7 0.3 114 \pm 4.8 111 \pm 8.2 1 92 \pm 5.0 95 \pm 5.0 120 \pm 9.6 200 \pm 7.0 170 \pm 6.2 225 \pm 3.8 3.3 92 \pm 1.2 95 \pm 1.5 128 \pm 3.9 206 \pm 5.2 171 \pm 8.9 228 \pm 10.1 10 86 \pm 9.3 99 \pm 3.8 136 \pm 10.1 179 \pm 13.1 160 \pm 4.3 201 \pm 3.5 33 101 \pm 5.8 100 \pm 3.2 131 \pm 4.7 215 \pm 8.4 180 \pm 4.2 222 \pm 14.5 129 \pm 6.1 299 \pm 6.1 208 \pm 2.3 147 \pm 8.2 192 \pm 5.8 192 \pm 5.8 193 \pm 4.9 194 \pm 5.9 194 \pm 5.9 194 \pm 5.9 195 \pm 5.0 5. | | 33 | 29 ± 1.2^{c} | 37 ± 3.3^{c} | 13 ± 1.2 | 15 ± 1.9 | 13 ± 2.6 | 12 ± 0.6 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 100 | | | 8 ± 0.0^{c} | 13 ± 2.6^{c} | 14 ± 1.5^{c} | 16 ± 1.8^{c} | | Positive control 988 ± 3.7 1,053 ± 31.3 110 ± 4.4 247 ± 12.3 136 ± 9.1 167 ± 15.2
TA97 0 105 ± 1.2 117 ± 6.6 131 ± 1.2 185 ± 9.3 145 ± 11.7 211 ± 12.7
0.3 114 ± 4.8 111 ± 8.2 120 ± 9.6 200 ± 7.0 170 ± 6.2 225 ± 3.8
3.3 92 ± 1.2 95 ± 1.5 128 ± 3.9 206 ± 5.2 171 ± 8.9 228 ± 10.1
10 86 ± 9.3 99 ± 3.8 136 ± 10.1 179 ± 13.1 160 ± 4.3 201 ± 3.5
33 101 ± 5.8° 100 ± 3.2° 131 ± 4.7 215 ± 8.4 180 ± 4.2 222 ± 14.5
100 100 100 100 100 100 100 100 100 100 | m : 1 | | 27 | 37 | 27 | | 27 | NT | | TA97 0 105 ± 1.2 117 ± 6.6 131 ± 1.2 185 ± 9.3 145 ± 11.7 211 ± 12.7 0.3 114 ± 4.8 111 ± 8.2 1 92 ± 5.0 95 ± 5.0 120 ± 9.6 200 ± 7.0 170 ± 6.2 225 ± 3.8 3.3 92 ± 1.2 95 ± 1.5 128 ± 3.9 206 ± 5.2 171 ± 8.9 228 ± 10.1 10 86 ± 9.3 99 ± 3.8 136 ± 10.1 179 ± 13.1 160 ± 4.3 201 ± 3.5 33 $101 \pm 5.8^{\circ}$ $100 \pm 3.2^{\circ}$ 131 ± 4.7 215 ± 8.4 180 ± 4.2 222 ± 14.5 100 $100 \pm 3.2^{\circ}$ 131 ± 4.7 215 ± 8.4 180 ± 4.2 222 ± 14.5 100 120 ± 0.5 <t< td=""><td></td><td>•</td><td>_</td><td>_</td><td></td><td></td><td>_</td><td></td></t<> | | • | _ | _ | | | _ | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Positive | control | 988 ± 3.7 | $1,053 \pm 31.3$ | 110 ± 4.4 | 247 ± 12.3 | 136 ± 9.1 | 167 ± 15.2 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | TA97 | 0 | 105 ± 1.2 | 117 ± 6.6 | 131 ± 1.2 | 185 ± 9.3 | 145 ± 11.7 | 211 ± 12.7 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | 120 + 9.6 | 200 ± 7.0 | 170 ± 6.2 | 225 + 3.8 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | Trial summary Negative Negati | | | $101 \pm 5.8^{\circ}$ | | | | | | | Trial summary Negative Negative Negative Positive control Sp2 \pm 26.3 1,198 \pm 59.0 664 \pm 30.9 789 \pm 38.4 644 \pm 13.8 499 \pm 34.2
TA98 0 18 \pm 1.5 18 \pm 3.6 32 \pm 0.9 31 \pm 3.8 34 \pm 0.6 33 \pm 4.5 0.3 16 \pm 1.8 17 \pm 0.9 1 14 \pm 1.7 16 \pm 3.6 28 \pm 4.3 30 \pm 3.9 30 \pm 1.2 32 \pm 3.9 3.3 18 \pm 2.6 18 \pm 1.5 34 \pm 3.5 36 \pm 1.0 31 \pm 1.2 37 \pm 3.7 10 15 \pm 1.7 20 \pm 2.5 37 \pm 4.4 37 \pm 6.1 41 \pm 1.9 34 \pm 4.5 33 17 \pm 1.2 17 1.8 | | | 101 ± 3.0 | 100 ± 3.2 | $129 \pm 6.1^{\circ}$ | $208 + 23^{\circ}$ | $147 + 82^{\circ}$ | $192 + 5.8^{\circ}$ | | Positive control 592 ± 26.3 $1,198 \pm 59.0$ 664 ± 30.9 789 ± 38.4 644 ± 13.8 499 ± 34.2 TA98 0 18 ± 1.5 18 ± 3.6 32 ± 0.9 31 ± 3.8 34 ± 0.6 33 ± 4.5 0.3 16 ± 1.8 17 ± 0.9 1 14 ± 1.7 16 ± 3.6 28 ± 4.3 30 ± 3.9 30 ± 1.2 32 ± 3.9 3.3 18 ± 2.6 18 ± 1.5 34 ± 3.5 36 ± 1.0 31 ± 1.2 37 ± 3.7 10 15 ± 1.7 20 ± 2.5 37 ± 4.4 37 ± 6.1 41 ± 1.9 34 ± 4.5 33 17 ± 1.2 14 ± 2.0 35 ± 1.2 31 ± 0.3 32 ± 4.1 37 ± 1.8 | | 100 | | | 12) = 0.1 | 200 = 2.5 | 117 = 0.2 | 1)2 = 3.0 | | Positive control 592 ± 26.3 $1,198 \pm 59.0$ 664 ± 30.9 789 ± 38.4 644 ± 13.8 499 ± 34.2 TA98 0 18 ± 1.5 18 ± 3.6 32 ± 0.9 31 ± 3.8 34 ± 0.6 33 ± 4.5 0.3 16 ± 1.8 17 ± 0.9 1 14 ± 1.7 16 ± 3.6 28 ± 4.3 30 ± 3.9 30 ± 1.2 32 ± 3.9 3.3 18 ± 2.6 18 ± 1.5 34 ± 3.5 36 ± 1.0 31 ± 1.2 37 ± 3.7 10 15 ± 1.7 20 ± 2.5 37 ± 4.4 37 ± 6.1 41 ± 1.9 34 ± 4.5 33 17 ± 1.2 14 ± 2.0 35 ± 1.2 31 ± 0.3 32 ± 4.1 37 ± 1.8 | Trial sun | nmary | Negative | Negative | Negative | Negative | Negative | Negative | | TA98 0 18 ± 1.5 18 ± 3.6 32 ± 0.9 31 ± 3.8 34 ± 0.6 33 ± 4.5 0.3 16 ± 1.8 17 ± 0.9 1 14 ± 1.7 16 ± 3.6 28 ± 4.3 30 ± 3.9 30 ± 1.2 32 ± 3.9 3.3 18 ± 2.6 18 ± 1.5 34 ± 3.5 36 ± 1.0 31 ± 1.2 37 ± 3.7 10 15 ± 1.7 20 ± 2.5 37 ± 4.4 37 ± 6.1 41 ± 1.9 34 ± 4.5 33 $17 \pm 1.2^{\circ}$ $14 \pm 2.0^{\circ}$ 35 ± 1.2 31 ± 0.3 32 ± 4.1 37 ± 1.8 | | • | _ | _ | _ | _ | _ | 0 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1 0511110 | • | 0,2 - 2010 | 1,130 = 23.0 | 00. – 20.5 | 707 = 20 | 011 = 1510 | .,, = 52 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | TA98 | 0 | 18 ± 1.5 | 18 ± 3.6 | 32 ± 0.9 | 31 ± 3.8 | 34 ± 0.6 | 33 ± 4.5 | | 3.3 18 ± 2.6 18 ± 1.5 34 ± 3.5 36 ± 1.0 31 ± 1.2 37 ± 3.7 10 15 ± 1.7 20 ± 2.5 37 ± 4.4 37 ± 6.1 41 ± 1.9 34 ± 4.5 33 17 ± 1.2 14 ± 2.0 35 ± 1.2 31 ± 0.3 32 ± 4.1 37 ± 1.8 | | 0.3 | 16 ± 1.8 | 17 ± 0.9 | | | | | | 10 15 \pm 1.7 20 \pm 2.5 37 \pm 4.4 37 \pm 6.1 41 \pm 1.9 34 \pm 4.5 33 17 \pm 1.2 14 \pm 2.0 35 \pm 1.2 31 \pm 0.3 32 \pm 4.1 37 \pm 1.8 | | 1 | 14 ± 1.7 | 16 ± 3.6 | 28 ± 4.3 | 30 ± 3.9 | 30 ± 1.2 | 32 ± 3.9 | | 10 15 \pm 1.7 20 \pm 2.5 37 \pm 4.4 37 \pm 6.1 41 \pm 1.9 34 \pm 4.5 33 17 \pm 1.2 14 \pm 2.0 35 \pm 1.2 31 \pm 0.3 32 \pm 4.1 37 \pm 1.8 | | 3.3 | 18 ± 2.6 | 18 ± 1.5 | 34 ± 3.5 | 36 ± 1.0 | 31 ± 1.2 | 37 ± 3.7 | | 33 $17 \pm 1.2^{\circ}$ $14 \pm 2.0^{\circ}$ 35 ± 1.2 31 ± 0.3 32 ± 4.1 37 ± 1.8 | | 10 | 15 ± 1.7 | 20 ± 2.5 | 37 ± 4.4 | 37 ± 6.1 | | 34 ± 4.5 | | $28 + 28^{\circ}$ $33 + 26$ $31 + 12^{\circ}$ $27 + 41$ | | | 17 ± 1.2^{c} | 14 ± 2.0^{c} | 35 ± 1.2 | | 32 ± 4.1 | | | 20 2 2 . 0 33 2 . 0 31 2 1 . 2 27 2 4 . 1 | | 100 | | | 28 ± 2.8^{c} | 33 ± 2.6 | $31 \pm 1.2^{\text{c}}$ | 27 ± 4.1 | | Trial manager Newton Newton Newton Newton Newton Newton | T-:-1 | | Nicostino | Nissation | Nonetine | N | NI4: | NIti | | Trial summary Negative Negativ | | • | _ | | 0 | 0 | 0 | | | Positive control $1,489 \pm 20.5$ $2,068 \pm 110.6$ $1,063 \pm 27.6$ 832 ± 129.8 $1,028 \pm 42.9$ 372 ± 25.1 | Positive | control | $1,489 \pm 20.5$ | $2,068 \pm 110.6$ | $1,063 \pm 2/.6$ | 832 ± 129.8 | $1,028 \pm 42.9$ | $3/2 \pm 25.1$ | TABLE E1 Mutagenicity of Divinylbenzene in Salmonella typhimurium | | | | | Revertan | ts/Plate | | | |-------------------------|----------------------|----------------------------|------------------------------|----------------------------|---|----------------------------|---------------------------------------| | Strain | Dose | _S | 9 | +hamst | ter S9 | +rat S | S9 | | | (µg/plate) | Trial 1 | Trial 2 | 10% | 30% | 10% | 30% | | Study p | erformed at | SRI Internation | onal | | | | | | TA100 | 0 | 118 ± 12.3 | 78 ± 3.4 | 111 ± 1.8 | 95 ± 5.3 | 105 ± 8.5 | 99 ± 0.3 | | IAIUU | 0.3 | 110 ± 12.3 | 78 ± 3.4
88 ± 4.2 | 111 ± 1.0 | 95 ± 5.5 | 103 ± 6.3 | 99 ± 0.3 | | | 0.3
1 | 111 + 20.0 | 84 ± 8.0 | | | | | | | 3 | 111 ± 20.0 | | | | | | | | | 111 ± 5.3 | 89 ± 11.9 | 102 + 7.0 | 107 + 4.2 | 112 + 0.5 | 100 + 0.0 | | | 10 | 102 ± 14.1 | 100 ± 11.0 | 102 ± 7.0 | 107 ± 4.2 | 113 ± 8.5 | 100 ± 0.9 | | | 33 | 96 ± 13.6 | 95 ± 14.9 | 123 ± 5.0 | 97 ± 8.1 | 95 ± 4.1 | 105 ± 4.5 | | | 100 | 82 ± 3.6^{c} | | 111 ± 0.3 | 103 ± 8.3 | 103 ± 14.0 | 101 ± 0.7 | | | 333 | | | 88 ± 2.3 | $98 \pm 5.0_{c}$ | 106 ± 3.2 | $87 \pm 0.3_{c}$ | | | 666 | | | C | 91 ± 7.0^{c} | c | 80 ± 6.9^{c} | | | 1,000 | | | $7 \pm 7.0^{\text{c}}$ | | 48 ± 24.7^{c} | | | Trial sum | marv | Negative | Negative | Negative | Negative | Negative | Negative | | Trial sum
Positive o | control ^d | 383 ± 14.9 | 208 ± 16.4 | $1,784 \pm 26.1$ | $1,024 \pm 61.8$ | 922 ± 112.2 | 438 ± 5.6 | | i ositive e | Control | 363 ± 14.7 | 200 ± 10.4 | 1,704 ± 20.1 | 1,024 ± 01.0 |)22 ± 112.2 | 430 ± 3.0 | | ГА1535 | | 36 ± 1.9 | 20 ± 3.2 | 11 ± 2.1 | 7 ± 0.6 | 13 ± 3.5 | 7 ± 0.7 | | | 0.3 | | 18 ± 4.2 | | | | | | | 1 | 26 ± 5.5 | 12 ± 4.4 | | | | | | | 3 | 25 ± 2.9 | $16 \pm
1.5$ | | | | | | | 10 | 24 ± 6.0 | 15 ± 2.5 | 7 ± 0.6 | 7 ± 3.0 | 8 ± 0.9 | 6 ± 0.0 | | | 33 | 11 ± 4.2 | 8 ± 3.2 | 6 ± 0.6 | 7 ± 1.2 | 9 ± 2.7 | 6 ± 0.0 | | | 100 | 0 ± 0.0^{c} | | 8 ± 2.7 | 6 ± 3.2 | 7 ± 1.0 | 7 ± 0.3 | | | 333 | | | 6 ± 1.2 | 4 ± 0.6 | 6 ± 1.2 | 7 ± 0.3 | | | 666 | | | | 5 ± 1.2^{c} | | 3 ± 0.9^{c} | | | 1,000 | | | 0 ± 0.0^{c} | | 0 ± 0.0^{c} | | | Trial sum | nmarv | Negative | Negative | Negative | Negative | Negative | Negative | | Positive o | • | 395 ± 21.7 | 250 ± 13.5 | 492 ± 17.2 | 351 ± 10.4 | 211 ± 18.1 | 158 ± 11.5 | | TA1537 | 0 | 4 ± 0.9 | 5 ± 0.0 | 9 ± 0.9 | 5 ± 1.0 | 7 ± 0.3 | 4 ± 0.9 | | | 0.3 | | 5 ± 0.0
5 ± 1.2 | . – 0.2 | | 0.0 | . 3.2 | | | 1 | 6 ± 0.6 | 4 ± 1.2 | | | | | | | 3 | 7 ± 0.7 | 4 ± 1.2 4 ± 1.2 | | | | | | | 10 | 6 ± 2.0 | 7 ± 0.3 | 7 ± 2.1 | 6 ± 1.0 | 8 ± 0.9 | 6 ± 1.5 | | | 33 | 6 ± 2.0
4 ± 0.7 | 5 ± 0.3 | 5 ± 0.7 | 6 ± 2.0 | 6 ± 0.9
6 ± 1.5 | 7 ± 0.6 | | | 100 | $0 \pm 0.0^{\circ}$ | 5 ± 0.5 | 6 ± 1.2 | 6 ± 2.0
4 ± 1.2 | 5 ± 0.7 | 7 ± 0.0
7 ± 1.8 | | | 333 | 0 ± 0.0 | | 6 ± 1.2
6 ± 0.3 | 4 ± 1.2
5 ± 1.2 | 6 ± 0.7 | | | | 555
666 | | | 0 ± 0.5 | 5 ± 1.2
5 ± 0.9 ^c | 0 ± 0.3 | $5 \pm 0.0 \\ 4 \pm 2.1$ ^c | | | 1,000 | | | 0 ± 0.0^{c} | 3 ± 0.9 | 0 ± 0.0^{c} | 4 ± 2.1 | | ruiu 1 | | NI | NI | | Manet | | NI | | Trial sum | • | Negative | Negative | Negative | Negative | Negative | Negative | | Positive of | control | 186 ± 19.4 | 157 ± 28.2 | 408 ± 11.7 | 354 ± 22.2 | 132 ± 20.3 | 114 ± 5.7 | TABLE E1 Mutagenicity of Divinylbenzene in Salmonella typhimurium | Strain | Dose | | S9 | Revertan | | +rat | S9 | |-----------|-------------|-----------------|------------------|-----------------|------------------|-----------------|----------------------| | | (µg/plate) | Trial 1 | Trial 2 | 10% | 10% | 10% | 10% | | Study p | erformed at | SRI Internatio | onal (continued) | | | | | | TA98 | 0 | 21 ± 1.5 | 16 ± 1.2 | 36 ± 2.5 | 36 ± 3.1 | 23 ± 2.3 | 20 ± 1.3 | | | 0.3 | | 15 ± 0.6 | | | | | | | 1 | 17 ± 1.5 | 13 ± 0.9 | | | | | | | 3 | 14 ± 1.2 | 14 ± 0.9 | | | | | | | 10 | 12 ± 2.2 | 11 ± 2.1 | 26 ± 2.7 | 30 ± 4.2 | 20 ± 1.9 | 22 ± 3.1 | | | 33 | 9 ± 2.4 | 15 ± 1.7 | 29 ± 1.2 | 24 ± 2.0 | 32 ± 3.0 | 22 ± 1.8 | | | 100 | 0 ± 0.0^{c} | | 24 ± 2.0 | 19 ± 3.5 | 25 ± 3.5 | 18 ± 2.1 | | | 333 | | | 29 ± 2.1 | 24 ± 7.9 | 25 ± 2.0 | 25 ± 3.4 | | | 666 | | | | 15 ± 1.5^{c} | | $17 \pm 1.7^{\circ}$ | | | 1,000 | | | 0 ± 0.0^{c} | | 0 ± 0.0^{c} | | | | mary | Negative | Negative | Negative | Negative | Negative | Negative | | Trial sum | iiiiai y | | | | | | | The detailed protocol and these data are presented by Zeiger *et al.* (1987). 0 μg/plate was the solvent control. Purity of divinylbenzene not known Revertants are presented as mean \pm standard error from three plates. Slight toxicity The positive controls in the absence of metabolic activation were sodium azide (TA100 and TA1535), 9-aminoacridine (TA97 and TA1537), and 4-nitro-o-phenylenediamine (TA98). The positive control for metabolic activation with all strains was 2-aminoanthracene. TABLE E2 Mutagenicity of Divinylbenzene-HP (80%) in Salmonella typhimurium | | | | Reverta | nts/Plate ^b | | | |-------------|---------------|------------------------------|------------------------------|------------------------|------------------|--| | Strain | Dose | _ | S9 | + 10% | rat S9 | | | | (μg/plate) | Trial 1 | Trial 2 | Trial 1 | Trial 2 | | | TA100 | 0 | 42 + 7.4 | 50 + 4.0 | 45 + 4.2 | 42 + 0.0 | | | 1A100 | 0
5 | 42 ± 7.4 | 50 ± 4.0
46 ± 3.3 | 45 ± 4.2 | 43 ± 9.9 | | | | 10 | 53 ± 6.4 | 40 ± 3.3
47 ± 5.8 | | | | | | 25 | 57 ± 3.0 | 36 ± 4.3 | | | | | | 50 | 43 ± 2.6 | 30 ± 4.3
33 ± 1.0 | 38 ± 1.2 | 37 ± 2.6 | | | | 75 | 43 ± 2.0
42 ± 4.3 | 45 ± 1.5 | 36 ± 1.2 | 37 ± 2.0 | | | | 100 | 37 ± 1.2 | 43 ± 1.3 | 46 ± 5.5 | 45 ± 6.2 | | | | 250 | 37 ± 1.2 | | 54 ± 2.4 | 52 ± 3.0 | | | | 500 | | | 43 ± 3.5 | 28 ± 4.3 | | | | 750 | | | 53 ± 8.1 | 17 ± 0.9 | | | | | | | | | | | Trial sum | mary c | Negative | Negative | Negative | Negative | | | Positive c | control | 531 ± 12.4 | 512 ± 32.0 | 692 ± 11.3 | 629 ± 11.0 | | | TA98 | 0 | 17 ± 0.9 | 12 ± 0.7 | 18 ± 1.8 | 19 ± 1.7 | | | | 5 | 11 ± 2.7 | 11 ± 0.6 | | | | | | 10 | 11 ± 1.5 | 11 ± 0.9 | | | | | | 25 | 14 ± 1.2 | 10 ± 0.3 | | | | | | 50 | 13 ± 2.0 | 7 ± 1.3 | 16 ± 2.9 | 18 ± 2.7 | | | | 75 | 7 ± 2.4 | 5 ± 1.2 | | | | | | 100 | | | 12 ± 3.9 | 12 ± 0.9 | | | | 250 | | | 23 ± 2.0 | 14 ± 1.5 | | | | 500 | | | 16 ± 2.8 | 18 ± 1.2 | | | | 750 | | | 7 ± 2.9 | 12 ± 2.3 | | | Trial sum | mary | Negative | Negative | Negative | Negative | | | Positive c | • | 516 ± 2.8 | 412 ± 4.4 | 874 ± 73.0 | 770 ± 17.7 | | | | | | | | | | | Escherio | chia coli WPM | uvrA pKM101 (Ana | logous to TA102) | | | | | | 0 | 109 ± 2.9 | 129 ± 4.9 | 164 ± 17.5 | 140 ± 5.8 | | | | 5 | 140 ± 3.5 | 117 ± 8.1 | | | | | | 10 | 139 ± 7.0 | 109 ± 4.6 | | | | | | 25 | 109 ± 6.4 | 109 ± 3.8 | | | | | | 50 | 125 ± 6.0 | 107 ± 3.7 | 195 ± 16.7 | 127 ± 14.8 | | | | 75 | 107 ± 2.3 | 99 ± 5.7 | | | | | | 100 | | | 179 ± 1.9 | 128 ± 13.1 | | | | 250 | | | 154 ± 3.5 | 141 ± 6.7 | | | | 500 | | | 134 ± 3.3 | 136 ± 8.8 | | | | 750 | | | 144 ± 17.7 | 129 ± 7.8 | | | Trial sum | mary | Negative | Negative | Negative | Negative | | | Positive c | • | $1,343 \pm 26.3$ | 949 ± 74.6 | 850 ± 20.8 | $1,205 \pm 25.7$ | | a Study performed at SITEK Research Laboratories. The detailed protocol is presented by Zeiger et al. (1987). 0 μg/plate was the solvent control $^{^{\}mbox{\scriptsize b}}$ Revertants are presented as mean \pm standard error from three plates. ^c The positive controls in the absence of metabolic activation were sodium azide (TA100), 4-nitro-o-phenylenediamine (TA98), and methyl methanesulfonate (pKM101). The positive control for metabolic activation with all strains was 2-aminoanthracene. TABLE E3 Frequency of Micronuclei in Normochromatic Erythrocytes and Percent Polychromatic Erythrocytes in Peripheral Blood of Mice Following Exposure to Divinylbenzene-HP by Inhalation for 3 Months^a | Compound | Exposure
Concentration
(ppm) | Number of Mice
with Erythrocytes
Scored | Micronucleated NCEs/
1,000 NCEs ^b | P-Value ^c | PCEs ^b (%) | |------------------|------------------------------------|---|---|--------------------------------------|---| | Male | | | | | | | Air ^d | 0 | 10 | 1.60 ± 0.12 | | 1.9 ± 0.1 | | Divinylbenzene | 12.5
25
50
100
200 | 10
10
10
10
0 ^e | $\begin{aligned} 1.30 &\pm 0.15 \\ 1.40 &\pm 0.21 \\ 1.55 &\pm 0.26 \\ 1.40 &\pm 0.22 \end{aligned}$ | 0.7848
0.6973
0.5502
0.6973 | 1.9 ± 0.1 1.6 ± 0.2 1.6 ± 0.2 1.6 ± 0.1 | | | | | P=0.558 ^f | | | | Female | | | | | | | Air | 0 | 10 | 1.40 ± 0.2 | | 1.6 ± 0.13 | | Divinylbenzene | 12.5
25
50
100
200 | 10
10
10
10
10
1e | $\begin{array}{c} 1.05 \pm 0.16 \\ 1.05 \pm 0.16 \\ 1.25 \pm 0.17 \\ 1.15 \pm 0.22 \\ 1.50 \end{array}$ | 0.8415
0.8415
0.6600
0.7582 | 1.7 ± 0.1 1.6 ± 0.1 1.8 ± 0.1 1.9 ± 0.1 2.1 | | | | | P=0.590 | | | Study was performed at SITEK Research Laboratories. The detailed protocol is presented by MacGregor et al. (1990). PCE=polychromatic erythrocyte; NCE=normochromatic erythrocyte. Mean ± standard error Pairwise comparison with the untreated control group; significant at P≤0.006 (ILS, 1990) Untreated control Excluded from statistical analyses due to high mortality Significance of micronucleated NCEs/1,000 NCEs tested by the one-tailed trend test, significant at P≤0.025 (ILS, 1990) ## APPENDIX F CLINICAL PATHOLOGY RESULTS | TABLE F1 | Hematology and Clinical Chemistry Data for Rats in the 3-Month Inhalation Study | | |----------|---|-----| | | of Divinylbenzene-HP | F-2 | | TABLE F2 | Hematology Data for Mice in the 3-Month Inhalation Study | | | | of Divinylbenzene-HP | F-7 | TABLE F1 Hematology and Clinical Chemistry Data for Rats in the 3-Month Inhalation Study of Divinylbenzene-HP^a | | Chamber Control | 25 ppm | 50 ppm | 100 ppm | 200 ppm | 400 ppm | |-------------------------------------|------------------------|-------------------|------------------|------------------|-------------------|--------------------| | n | 10 | 10 | 10 | 10 | 10 | 10 | | Male | | | | | | | | Hematology | | | | | | | | Automated hematocrit | (%) | | | | | | | Day 3 | 40.3 ± 0.6 | 40.8 ± 0.8 | 42.0 ± 0.8 | 41.2 ± 0.5 | 42.0 ± 0.7 | $43.2 \pm 0.7**$ | | Day 23 | 46.2 ± 0.6 | 45.2 ± 0.4 | 45.1 ± 0.7 | 45.3 ± 0.7 | 43.9 ± 0.6 | 48.5 ± 0.5 | | Week 14 | 45.1 ± 0.3 | 44.9 ± 0.5 | 45.5 ± 0.3 | 46.1 ± 0.5 | 45.6 ± 0.4 | $46.6 \pm 0.4*$ | | Manual hematocrit (%) |) | | | | | | | Day 3 | 42.5 ± 0.5 | 42.3 ± 0.9 | 43.4 ± 1.0 | 43.6 ± 0.6 | 44.0 ± 0.7 | $44.7 \pm 0.5*$ | | Day 23 | 47.3 ± 0.5 | 46.5 ± 0.5 | 47.2 ± 0.5 | 47.0 ± 0.6 |
45.7 ± 0.4 | 48.7 ± 0.3 | | Week 14 | 46.5 ± 0.4 | 45.8 ± 0.4 | 45.9 ± 0.2 | 47.1 ± 0.4 | 46.0 ± 0.4 | 47.2 ± 0.3 | | Hemoglobin (g/dL) | | | | | | | | Day 3 | 12.7 ± 0.2 | 12.8 ± 0.3 | 13.1 ± 0.3 | 12.9 ± 0.2 | 13.1 ± 0.3 | 13.4 ± 0.2 | | Day 23 | 15.0 ± 0.1 | 15.0 ± 0.2 | 15.0 ± 0.2 | 14.9 ± 0.2 | 14.5 ± 0.2 | 15.4 ± 0.2 | | Week 14 | 14.9 ± 0.1 | 14.8 ± 0.1 | 14.7 ± 0.1 | 15.1 ± 0.1 | 14.8 ± 0.1 | 15.2 ± 0.0 | | Erythrocytes (10 ⁶ /μL) | | | | | | | | Day 3 | 6.35 ± 0.10 | 6.49 ± 0.17 | 6.68 ± 0.11 | 6.57 ± 0.08 | $6.73 \pm 0.14*$ | $6.96 \pm 0.12**$ | | Day 23 | 7.34 ± 0.10 | 7.15 ± 0.10 | 7.16 ± 0.16 | 7.25 ± 0.14 | 7.03 ± 0.14 | 7.65 ± 0.07 | | Week 14 | 8.28 ± 0.06 | 8.27 ± 0.08 | 8.36 ± 0.03 | 8.50 ± 0.09 | 8.43 ± 0.07 | $8.57 \pm 0.06**$ | | Reticulocytes (10 ⁶ /μL) |) | | | | | | | Day 3 | 0.42 ± 0.05 | 0.49 ± 0.06 | 0.39 ± 0.06 | 0.42 ± 0.03 | 0.45 ± 0.03 | 0.44 ± 0.04 | | Day 23 | 0.17 ± 0.02 | $0.28 \pm 0.03**$ | $0.24 \pm 0.02*$ | $0.26 \pm 0.02*$ | $0.27 \pm 0.03**$ | $0.34 \pm 0.03**$ | | Week 14 | 0.19 ± 0.02 | 0.19 ± 0.01 | 0.19 ± 0.02 | 0.21 ± 0.02 | 0.19 ± 0.02 | 0.18 ± 0.03 | | Nucleated erythrocytes | s/100 leukocytes | | | | | | | Day 3 | 1.00 ± 0.37 | 1.00 ± 0.37 | 0.90 ± 0.50 | 0.90 ± 0.28 | 1.10 ± 0.53 | 2.40 ± 0.58 | | Day 23 | 0.50 ± 0.31 | 0.30 ± 0.21 | 0.40 ± 0.22 | 0.30 ± 0.21 | 0.80 ± 0.29 | 0.40 ± 0.16 | | Week 14 | 0.10 ± 0.10 | 0.20 ± 0.13 | 0.10 ± 0.10 | 0.00 ± 0.00 | 0.10 ± 0.10 | 0.00 ± 0.00 | | Mean cell volume (fL) | | | | | | | | Day 3 | 63.4 ± 0.5 | 62.8 ± 0.4 | 62.8 ± 0.3 | 62.6 ± 0.3 | 62.6 ± 0.7 | 62.1 ± 0.3 | | Day 23 | 62.9 ± 0.5 | 63.2 ± 0.5 | 62.9 ± 0.6 | 62.6 ± 0.5 | 62.5 ± 0.7 | 63.2 ± 0.3 | | Week 14 | 54.6 ± 0.2 | 54.2 ± 0.2 | 54.4 ± 0.2 | 54.2 ± 0.1 | 54.1 ± 0.2 | 54.4 ± 0.2 | | Mean cell hemoglobin | (pg) | | | | | | | Day 3 | 20.0 ± 0.2 | 19.7 ± 0.2 | 19.7 ± 0.2 | 19.7 ± 0.2 | 19.5 ± 0.3 | 19.3 ± 0.2 | | Day 23 | 20.5 ± 0.3 | 21.0 ± 0.2 | 21.0 ± 0.3 | 20.5 ± 0.3 | 20.6 ± 0.3 | 20.1 ± 0.2 | | Week 14 | 18.1 ± 0.1 | 17.9 ± 0.1 | 17.6 ± 0.1 | 17.8 ± 0.1 | $17.5 \pm 0.1*$ | 17.8 ± 0.1 | | Mean cell hemoglobin | concentration (g/dL) | | | | | | | Day 3 | 31.6 ± 0.2 | 31.4 ± 0.3 | 31.3 ± 0.2 | 31.3 ± 0.3 | 31.3 ± 0.3 | 31.1 ± 0.2 | | Day 23 | 32.6 ± 0.4 | 33.2 ± 0.3 | 33.3 ± 0.3 | 32.8 ± 0.3 | 33.0 ± 0.3 | 31.7 ± 0.4 | | Week 14 ₂ | 33.1 ± 0.2 | 33.0 ± 0.2 | 32.4 ± 0.2 | 32.8 ± 0.2 | 32.4 ± 0.2 | 32.6 ± 0.3 | | Platelets (10 ³ /μL) | | | | | | | | Day 3 | 890.1 ± 16.9 | 908.9 ± 18.2 | 923.5 ± 24.7 | 936.4 ± 13.7 | 910.9 ± 31.5 | $988.1 \pm 17.8**$ | | Day 23 | 852.6 ± 26.1 | 867.4 ± 47.5 | 926.1 ± 42.3 | 940.6 ± 49.0 | 914.4 ± 35.2 | 963.7 ± 32.8 | | Week 14 | 589.2 ± 7.7 | 557.7 ± 8.5 | 557.8 ± 12.9 | 552.4 ± 12.0 | 580.8 ± 8.2 | 602.3 ± 13.5 | | Leukocytes (10 ³ /μL) | | | | | | | | Day 3 | 8.43 ± 0.65 | 9.29 ± 0.79 | 9.01 ± 0.47 | 10.36 ± 0.54 | 7.26 ± 0.40 | $5.93 \pm 0.49*$ | | Day 23 | 12.45 ± 0.37 | 13.23 ± 0.54 | 12.91 ± 0.48 | 12.43 ± 0.57 | 11.19 ± 0.49 | $7.49 \pm 0.61**$ | | Week 14 | 7.19 ± 0.31 | 7.35 ± 0.41 | 6.91 ± 0.31 | 7.09 ± 0.31 | 6.78 ± 0.27 | 7.07 ± 0.40 | | Segmented neutrophils | $(10^3/\mu L)$ | | | | | | | Day 3 | 0.77 ± 0.09 | 0.99 ± 0.10 | 1.13 ± 0.10 | $1.28 \pm 0.14*$ | 1.00 ± 0.11 | 1.25 ± 0.15 | | Day 23 | 0.98 ± 0.16 | 1.13 ± 0.14 | 1.31 ± 0.12 | 1.15 ± 0.13 | 0.94 ± 0.12 | 0.96 ± 0.08 | | Week 14 | 1.12 ± 0.09 | 1.20 ± 0.08 | 1.11 ± 0.11 | 0.99 ± 0.05 | 0.96 ± 0.06 | 1.02 ± 0.10 | TABLE F1 Hematology and Clinical Chemistry Data for Rats in the 3-Month Inhalation Study of Divinylbenzene-HP | Male (continued) Male (continued) Bands (10³/μL) Day 3 0.00 ± 0.00 Day 23 0.00 ± 0.00 Week 14 0.00 ± 0.00 Lymphocytes (10³/μL) Day 3 Day 23 11.28 ± 0.40 Week 14 6.01 ± 0.29 Monocytes (10³/μL) Day 3 Day 3 0.17 ± 0.06 Day 23 0.11 ± 0.04 Week 14 0.04 ± 0.02 Basophils (10³/μL) 0.00 ± 0.000 Day 3 0.000 ± 0.000 Week 14 0.000 ± 0.000 Eosinophils (10³/μL) 0.08 ± 0.05 Day 3 0.08 ± 0.05 Day 23 0.08 ± 0.02 Week 14 0.02 ± 0.02 Clinical Chemistry Urea nitrogen (mg/dL) Day 3 0.55 ± 0.02 Day 23 0.77 ± 0.02 Week 14 0.71 ± 0.03 Total protein (g/dL) Day 3 0.55 ± 0.1 Day 23 0.77 ± 0.02 Week 14 0.7 ± 0.01 Albumin (g/dL) <th>l 25 ppm</th> <th>50 ppm</th> <th>100 ppm</th> <th>200 ppm</th> <th>400 ppm</th> | l 25 ppm | 50 ppm | 100 ppm | 200 ppm | 400 ppm | |--|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------| | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 10 | 10 | 10 | 10 | 10 | | Bands $(10^3/\mu L)$ Day 3 Day 23 0.00 ± 0.00 Week 14 Day 3 0.00 ± 0.00 Lymphocytes $(10^3/\mu L)$ Day 3 0.12 ± 0.54 Day 23 Week 14 0.01 ± 0.29 Monocytes $(10^3/\mu L)$ Day 3 Day 23 0.11 ± 0.06 Day 23 0.11 ± 0.06 Day 23 0.11 ± 0.04 Week 14 0.04 ± 0.02 Basophils $(10^3/\mu L)$ Day 3 Day 23 0.000 ± 0.000 Week 14 0.000 ± 0.000 Eosinophils $(10^3/\mu L)$ Day 3 0.08 ± 0.05 Day 23 0.08 ± 0.05 Day 23 0.08 ± 0.05 Day 23 Week 14 0.02 ± 0.02 Clinical Chemistry Urea nitrogen (mg/dL) Day 3 0.55 ± 0.02 Day 23 Week 14 0.71 ± 0.03 Total protein (g/dL) Day 3 Day 23 Week 14 0.71 ± 0.03 Total protein (g/dL) Day 3 Day 23 Week 14 Albumin Conditional Conditions Conditi | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.00 ± 0.00 | | Week 14 0.00 ± 0.00 Lymphocytes $(10^3/\mu L)$ Day 3 7.42 ± 0.54 Day 23 11.28 ± 0.40 Week 14 6.01 ± 0.29 Monocytes $(10^3/\mu L)$ Day 3 0.17 ± 0.06 Day 23 0.11 ± 0.04 Week 14 0.04 ± 0.02 Basophils $(10^3/\mu L)$ Day 3 0.000 ± 0.000 Day 23 0.000 ± 0.000 Week 14 0.000 ± 0.000 Eosinophils $(10^3/\mu L)$ Day 3 0.08 ± 0.05 Day 23 0.08 ± 0.05 Day 23 0.08 ± 0.04 Week 14 0.02 ± 0.02 Clinical Chemistry Urea nitrogen (mg/dL) Day 3 0.55 ± 0.02 Day 23 0.55 ± 0.02 Day 23 0.77 ± 0.02 Week 14 0.71 ± 0.03 Total protein (g/dL) Day 3 0.55 ± 0.12 Day 23 0.77 ± 0.02 Week 14 0.71 ± 0.03 Total protein (g/dL) Day 3 0.55 ± 0.12 Day 23 0.77 ± 0.02 Week 14 0.71 ± 0.03 Total protein (g/dL) Day 3 0.55 ± 0.12 Day 23 Da | 0.00 ± 0.00
0.00 ± 0.00 | 0.00 ± 0.00
0.02 ± 0.02 | 0.02 ± 0.01
0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | | | 0.00 ± 0.00
0.00 ± 0.00 | 0.02 ± 0.02
0.00 ± 0.00 | 0.00 ± 0.00
0.00 ± 0.00 | 0.00 ± 0.00
0.00 ± 0.00 | 0.00 ± 0.00
0.00 ± 0.00 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 7.94 ± 0.65 | 7.47 ± 0.51 | 8.65 ± 0.46 | 6.04 ± 0.45 | 4.63 ± 0.48** | | Week 14 6.01 ± 0.29 Monocytes $(10^3/\mu L)$ Day 3
0.17 ± 0.06 Day 23 0.11 ± 0.04 Week 14 0.04 ± 0.02 Basophils $(10^3/\mu L)$ Day 3 0.000 ± 0.000 Day 23 0.000 ± 0.000 Week 14 0.000 ± 0.000 Eosinophils $(10^3/\mu L)$ Day 3 0.08 ± 0.05 Day 23 0.08 ± 0.04 Week 14 0.02 ± 0.02 Clinical Chemistry Urea nitrogen (mg/dL) Day 3 0.08 ± 0.04 Week 14 0.02 ± 0.02 Creatinine (mg/dL) Day 3 0.55 ± 0.02 Day 23 0.77 ± 0.02 Week 14 0.71 ± 0.03 Total protein (g/dL) Day 3 0.55 ± 0.02 Day 23 0.77 ± 0.02 Week 14 0.71 ± 0.03 Total protein (g/dL) Day 3 0.55 ± 0.1 Day 3 0.55 ± 0.1 Day 23 0.55 ± 0.1 Day 3 23 0.55 ± 0.1 Day 3 23 0.55 ± 0.1 Day 23 0.55 ± 0.1 Day 23 0.55 ± 0.1 Day 23 | 11.98 ± 0.03 | 11.39 ± 0.37 | 11.16 ± 0.54 | 9.72 ± 0.46 | $6.47 \pm 0.57**$ | | Monocytes $(10^3/\mu L)$ Day 3 0.17 ± 0.06 Day 23 0.11 ± 0.04 Week 14 0.04 ± 0.02 Basophils $(10^3/\mu L)$ Day 3 0.000 ± 0.000 Day 23 Week 14 0.000 ± 0.000 Eosinophils $(10^3/\mu L)$ Day 3 0.08 ± 0.05 Day 23 Week 14 0.02 ± 0.02 Clinical Chemistry Urea nitrogen (mg/dL) Day 3 0.08 ± 0.05 Day 23 Week 14 0.02 ± 0.02 Creatinine (mg/dL) Day 3 0.55 ± 0.02 Day 23 Week 14 0.71 ± 0.03 Total protein (g/dL) Day 3 Day 23 Week 14 0.71 ± 0.03 Total protein (g/dL) Day 3 Day 23 0.55 ± 0.02 Day 3 0.55 ± 0.02 Day 3 0.55 ± 0.02 Day 3 0.55 ± 0.02 Or7 ± 0.02 Week 14 0.71 ± 0.03 Total protein (g/dL) Day 3 Day 23 0.55 ± 0.02 Day 3 0.55 ± 0.02 Day 3 0.55 ± 0.02 Or7 ± 0.02 Week 14 0.71 ± 0.03 Total protein (g/dL) Day 3 0.55 ± 0.02 0 | 6.09 ± 0.40 | 5.71 ± 0.29 | 5.93 ± 0.33 | 5.67 ± 0.25 | 5.91 ± 0.40 | | Day 3 | 0.09 ± 0.40 | 3.71 ± 0.29 | 3.93 ± 0.33 | 3.07 ± 0.23 | 3.91 ± 0.40 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.36 ± 0.09 | 0.39 ± 0.09 | 0.39 ± 0.08 | 0.21 ± 0.04 | 0.06 ± 0.02 | | Week 14 0.04 ± 0.02 Basophils $(10^3/\mu L)$ Day 3 0.000 ± 0.000 Week 14 0.000 ± 0.000 Eosinophils $(10^3/\mu L)$ Day 3 0.08 ± 0.05 Day 23 0.08 ± 0.05 Day 23 0.08 ± 0.04 Week 14 0.02 ± 0.02 Clinical Chemistry Urea nitrogen (mg/dL) Day 3 0.300 ± 0.000 Urea nitrogen (mg/dL) Day 3 0.000 ± 0.000 Clinical Chemistry Urea nitrogen (mg/dL) Day 3 0.000 ± 0.000 Creatinine (mg/dL) Day 3 0.000 ± 0.000 Creatinine (mg/dL) Day 3 0.000 ± 0.000 Urea nitrogen (mg/dL | | | 0.39 ± 0.08
0.08 ± 0.04 | | | | Basophils $(10^3/\mu L)$ Day 3 Day 23 Week 14 Day 3 Day 23 Day 23 Day 23 Day 23 Day 23 Day 23 Clinical Chemistry Urea nitrogen (mg/dL) Day 3 Day 23 Week 14 Creatinine (mg/dL) Day 3 Day 23 Week 14 Creatinine (mg/dL) Day 3 Day 23 Day 23 Day 23 Day 23 Day 23 Day 23 Clinical Chemistry Urea nitrogen (mg/dL) Day 3 Day 23 Day 23 Day 23 Day 23 Day 23 Day 23 Creatinine (mg/dL) Day 3 Day 23 Day 23 Creatinine (mg/dL) Day 3 Day 23 Creatinine (mg/dL) Day 3 Day 23 Creatinine (mg/dL) Day 3 Day 23 Day 23 Creatinine (mg/dL) Day 3 (m | 0.05 ± 0.03
0.04 ± 0.02 | 0.14 ± 0.06 | 0.08 ± 0.04
0.09 ± 0.02 | 0.45 ± 0.10 | 0.05 ± 0.02
0.09 ± 0.03 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.04 ± 0.02 | 0.06 ± 0.02 | 0.09 ± 0.02 | 0.08 ± 0.03 | 0.09 ± 0.03 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.000 + 0.000 | 0.000 + 0.000 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.000 + 0.000 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0.000 ± 0.000 | 0.000 ± 0.000 | | | 0.000 ± 0.000 | | Eosinophils ($10^3/\mu L$) Day 3 0.08 ± 0.05 Day 23 0.08 ± 0.04 Week 14 0.02 ± 0.02 Clinical Chemistry Urea nitrogen (mg/dL) 0.02 ± 0.02 Day 3 0.3 ± 0.5 Day 23 9.1 ± 0.3 Week 14 12.6 ± 0.6 Creatinine (mg/dL) Day 3 0.55 ± 0.02 Day 23 0.77 ± 0.02 Week 14 0.71 ± 0.03 Total protein (g/dL) 0.03 ± 0.1 Day 23 0.1 ± 0.1 Week 14 0.7 ± 0.1 Albumin (g/dL) 0.03 ± 0.1 Day 3 0.03 ± 0.1 Week 14 0.03 ± 0.1 Week 14 0.03 ± 0.1 Week 14 0.03 ± 0.1 Albumin (g/dL) 0.03 ± 0.1 Week 14 | 0.000 ± 0.000 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.000 ± 0.000 | 0.006 ± 0.006 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.000 ± 0.000 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.01 + 0.01 | 0.02 + 0.01 | 0.02 + 0.01 | 0.01 + 0.01 | 0.00 + 0.00 | | Week 14 0.02 ± 0.02 Clinical Chemistry Urea nitrogen (mg/dL) 0.3 ± 0.5 Day 3 0.3 ± 0.5 Day 23 9.1 ± 0.3 Week 14 12.6 ± 0.6 Creatinine (mg/dL) 0.55 ± 0.02 Day 23 0.77 ± 0.02 Week 14 0.71 ± 0.03 Total protein (g/dL) 0.33 ± 0.1 Day 3 0.55 ± 0.1 Day 23 0.1 ± 0.1 Week 14 0.7 ± 0.1 Albumin (g/dL) 0.1 ± 0.1 Day 3 0.5 ± 0.1 Day 3 0.1 ± 0.1 Week 14 0.7 ± 0.1 Globulin (g/dL) 0.1 ± 0.1 Day 3 < | 0.01 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.00 ± 0.00 | | Clinical Chemistry Urea nitrogen (mg/dL) Day 3 6.3 \pm 0.5 Day 23 9.1 \pm 0.3 Week 14 12.6 \pm 0.6 Creatinine (mg/dL) Day 3 0.55 \pm 0.02 Day 23 0.77 \pm 0.02 Week 14 0.71 \pm 0.03 Total protein (g/dL) Day 3 5.5 \pm 0.1 Day 23 6.1 \pm 0.1 Albumin (g/dL) Day 3 3.5 \pm 0.1 Day 23 3.9 \pm 0.1 Week 14 4.0 \pm 0.0 Globulin (g/dL) Day 3 2.1 \pm 0.1 Day 3 2.3 \pm 0.1 | 0.08 ± 0.03 | 0.05 ± 0.02 | 0.05 ± 0.02 | 0.09 ± 0.04 | 0.01 ± 0.01 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.08 ± 0.02 | 0.09 ± 0.04 | 0.04 ± 0.02 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | Week 14 12.6 ± 0.6 Creatinine (mg/dL) 0.55 ± 0.02 Day 3 0.55 ± 0.02 Day 23 0.77 ± 0.02 Week 14 0.71 ± 0.03 Total protein (g/dL) 0.71 ± 0.03 Day 3 0.1 ± 0.1 Week 14 0.7 ± 0.1 Albumin (g/dL) 0.7 ± 0.1 Day 3 0.5 ± 0.1 Day 23 0.5 ± 0.1 Week 14 0.7 ± 0.1 Globulin (g/dL) 0.0 ± 0.0 Day 3 0.1 ± 0.1 Day 3 0.1 ± 0.1 Day 3 0.1 ± 0.1 Day 23 | 5.7 ± 0.3 | 7.2 ± 0.5 | $12.0 \pm 0.5**$ | $17.8 \pm 0.9**$ | $21.9 \pm 0.2**$ | | $\begin{array}{ccccc} \text{Creatinine (mg/dL)} & & & & \\ \text{Day 3} & & & & 0.55 \pm 0.02 \\ \text{Day 23} & & & 0.77 \pm 0.02 \\ \text{Week 14} & & & 0.71 \pm 0.03 \\ \hline \text{Total protein (g/dL)} & & & \\ \text{Day 3} & & & 5.5 \pm 0.1 \\ \text{Day 23} & & 6.1 \pm 0.1 \\ \text{Week 14} & & 6.7 \pm 0.1 \\ \hline \text{Albumin (g/dL)} & & & \\ \text{Day 3} & & & 3.5 \pm 0.1 \\ \text{Day 3} & & & 3.5 \pm 0.1 \\ \hline \text{Day 23} & & & 3.9 \pm 0.1 \\ \hline \text{Week 14} & & 4.0 \pm 0.0 \\ \hline \text{Globulin (g/dL)} & & & \\ \hline \text{Day 3} & & & 2.1 \pm 0.1 \\ \hline \text{Day 3} & & & 2.3 \pm 0.1 \\ \hline \end{array}$ | 7.8 ± 0.3 | 8.3 ± 0.4 | 10.0 ± 0.6 | $13.5 \pm 0.5**$ | $21.1 \pm 0.4**$ | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 11.9 ± 0.5 | 12.9 ± 0.6 | 12.9 ± 0.3 | 11.1 ± 0.6 | $10.2 \pm 0.4**$ | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | Week 14 0.71 ± 0.03 Total protein (g/dL) Day 3 5.5 ± 0.1 Day 23 6.1 ± 0.1 Week 14 6.7 ± 0.1 Albumin (g/dL) Day 3 3.5 ± 0.1 Day 23 3.9 ± 0.1 Week 14 4.0 ± 0.0 Globulin (g/dL) Day 3 2.1 ± 0.1 Day 3 2.1 ± 0.1 Day 3 2.3 ± 0.1 | $0.56 \pm 0.02^{\text{b}}$ | 0.59 ± 0.02 | $0.61 \pm 0.01*$ | $0.62 \pm 0.02**$ | $0.60 \pm 0.02*$ | | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | 0.72 ± 0.01 | 0.74 ± 0.02 | 0.74 ± 0.02 | 0.72 ± 0.02 | 0.79 ± 0.01 | | $\begin{array}{cccc} \text{Day 3} & 5.5 \pm 0.1 \\ \text{Day 23} & 6.1 \pm 0.1 \\ \text{Week 14} & 6.7 \pm 0.1 \\ \text{Albumin (g/dL)} & & & \\ \text{Day 3} & 3.5 \pm 0.1 \\ \text{Day 23} & 3.9 \pm 0.1 \\ \text{Week 14} & 4.0 \pm 0.0 \\ \text{Globulin (g/dL)} & & \\ \text{Day 3} & 2.1 \pm 0.1 \\ \text{Day 23} & 2.3 \pm 0.1 \\ \end{array}$ | 0.69 ± 0.02 | 0.78 ± 0.03 | 0.79 ± 0.03 | 0.74 ± 0.02 | 0.75 ± 0.02 | | $\begin{array}{cccc} \text{Day 23} & 6.1 \pm 0.1 \\ \text{Week 14} & 6.7 \pm 0.1 \\ \text{Albumin (g/dL)} & & & \\ \text{Day 3} & 3.5 \pm 0.1 \\ \text{Day 23} & 3.9 \pm 0.1 \\ \text{Week 14} & 4.0 \pm 0.0 \\ \text{Globulin (g/dL)} & & \\ \text{Day 3} & 2.1 \pm 0.1 \\ \text{Day 23} & 2.3 \pm 0.1 \\ \end{array}$ | | | | | | | Week 14 6.7 ± 0.1 Albumin (g/dL) 3.5 ± 0.1 Day 3 3.5 ± 0.1 Day 23 3.9 ± 0.1 Week 14 4.0 ± 0.0 Globulin (g/dL) 3.0 ± 0.1 Day 3 2.1 ± 0.1 Day 23 2.3 ± 0.1 | 5.5 ± 0.1 | 5.5 ± 0.1 | 5.5 ± 0.1 | 5.5 ± 0.1 | 5.7 ± 0.1 | | $\begin{array}{lll} \mbox{Albumin (g/dL)} \\ \mbox{Day 3} & 3.5 \pm 0.1 \\ \mbox{Day 23} & 3.9 \pm 0.1 \\ \mbox{Week 14} & 4.0 \pm 0.0 \\ \mbox{Globulin (g/dL)} \\ \mbox{Day 3} & 2.1 \pm 0.1 \\ \mbox{Day 23} & 2.3 \pm 0.1 \\ \end{array}$ | $5.9 \pm 0.0**$ | $5.9 \pm 0.1*$ | $5.8 \pm 0.0**$ | $5.7 \pm 0.1**$ | $5.7 \pm 0.0**$ | | $\begin{array}{lll} \mbox{Albumin (g/dL)} \\ \mbox{Day 3} & 3.5 \pm 0.1 \\ \mbox{Day 23} & 3.9 \pm 0.1 \\ \mbox{Week 14} & 4.0 \pm 0.0 \\ \mbox{Globulin (g/dL)} \\ \mbox{Day 3} & 2.1 \pm 0.1 \\ \mbox{Day 23} & 2.3 \pm 0.1 \\ \end{array}$ | 6.6 ± 0.1 | 6.7 ± 0.0 | 6.6 ± 0.1 | 6.5 ± 0.1 | 6.5 ± 0.1 | | $\begin{array}{ccc} \text{Day 23} & 3.9 \pm 0.1 \\ \text{Week 14} & 4.0 \pm 0.0 \\ \text{Globulin (g/dL)} \\ \text{Day 3} & 2.1 \pm 0.1 \\ \text{Day 23} & 2.3 \pm 0.1 \\ \end{array}$ | | | | | | | Week 14 4.0 ± 0.0 Globulin (g/dL) 2.1 ± 0.1 Day 3 2.1 ± 0.1 Day 23 2.3 ± 0.1 | 3.4 ± 0.1 | 3.5 ± 0.1 | 3.4 ± 0.0 | 3.4 ± 0.1 | 3.6 ± 0.0 | | Week 14 4.0 ± 0.0 Globulin (g/dL) 2.1 ± 0.1 Day 3 2.1 ± 0.1 Day 23 2.3 ± 0.1 | 3.7 ± 0.1 | 3.8 ± 0.0 | 3.8 ± 0.1 | 3.7 ± 0.1 | 3.7 ± 0.1 | | $\begin{array}{ll} \mbox{Globulin (g/dL)} \\
\mbox{Day 3} & 2.1 \pm 0.1 \\ \mbox{Day 23} & 2.3 \pm 0.1 \end{array}$ | 3.9 ± 0.0 | 3.9 ± 0.0 | 3.9 ± 0.0 | 3.9 ± 0.1 | 3.9 ± 0.0 | | Day 3 2.1 ± 0.1
Day 23 2.3 ± 0.1 | | | | | | | Day 23 2.3 ± 0.1 | 2.1 ± 0.1 | 2.1 ± 0.0 | 2.1 ± 0.1 | 2.1 ± 0.1 | 2.1 ± 0.0 | | • | 2.2 ± 0.1 | 2.1 ± 0.1 | $2.0 \pm 0.1*$ | $2.0 \pm 0.1*$ | $2.0 \pm 0.1*$ | | | 2.7 ± 0.1 | 2.8 ± 0.1 | 2.7 ± 0.1 | 2.6 ± 0.1 | 2.6 ± 0.1 | | Albumin/globulin ratio | | | | | | | Day 3 1.7 ± 0.1 | 1.6 ± 0.1 | 1.6 ± 0.0 | 1.6 ± 0.1 | 1.7 ± 0.1 | 1.7 ± 0.0 | | Day 23 1.7 ± 0.1 | 1.8 ± 0.1 | 1.8 ± 0.1 | 2.0 ± 0.1 | 1.9 ± 0.1 | 2.0 ± 0.1 | | Week 14 1.4 ± 0.0 | 1.5 ± 0.0 | 1.4 ± 0.1 | 1.4 ± 0.1 | 1.5 ± 0.1 | 1.5 ± 0.1 | TABLE F1 Hematology and Clinical Chemistry Data for Rats in the 3-Month Inhalation Study of Divinylbenzene-HP | | Chamber Control | 25 ppm | 50 ppm | 100 ppm | 200 ppm | 400 ppm | |--|---|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------| | n | 10 | 10 | 10 | 10 | 10 | 10 | | Male (continued) | | | | | | | | Clinical Chemistry (co | ntinued) | | | | | | | Alanine aminotransfera | ase (III/L) | | | | | | | Day 3 | 52 ± 1 | 51 ± 3 | 52 ± 2 | 51 ± 1 | 50 ± 1 | 51 ± 1 | | Day 23 | 40 ± 1 | 35 ± 1** | $36 \pm 1**$ | 35 ± 1** | 34 ± 1** | 34 ± 1** | | Week 14 | 93 ± 11 | 93 ± 8 | 70 ± 3 | 86 ± 8 | 59 ± 5** | 44 ± 1** | | Alkaline phosphatase (| |)3 ± 0 | 70 ± 3 | 00 ± 0 | 37 ± 3 | 77 ± 1 | | Day 3 | 890 ± 20 | 854 ± 31 | 867 ± 36 | 749 ± 32** | 767 ± 22** | 721 ± 24** | | • | 570 ± 20
570 ± 11 | 567 ± 17 | 594 ± 15 | 587 ± 22 | 597 ± 21 | 599 ± 20 | | Day 23 | 370 ± 11
350 ± 5 | 307 ± 17
$322 \pm 4*$ | $320 \pm 10*$ | 336 ± 7 | 397 ± 21
326 ± 4 | 399 ± 20
$314 \pm 11*$ | | Week 14 | | 322 ± 4. | $320 \pm 10^{\circ}$ | 330 ± / | 320 ± 4 | 314 ± 11. | | Creatine kinase (IU/L) | 320 ± 32^b | 401 + 90 | 204 + 50 | 422 + 60 | 522 ± 01 | 405 + 40 | | Day 3 | | 491 ± 89 | 394 ± 59 | 422 ± 69 | 533 ± 91 | 405 ± 48 | | Day 23 | 346 ± 38 | 493 ± 100 | 579 ± 163 | 405 ± 83 | 390 ± 38 | 484 ± 115 | | Week 14 | 130 ± 20 | 154 ± 27 | 209 ± 33 | 210 ± 32 | 192 ± 18 | 191 ± 29 | | Sorbitol dehydrogenas | | 44.4 | 44.4 | 44.4 | 44.4 | 10 . 0 | | Day 3 | 14 ± 1 | 13 ± 0 | | Day 23 | 13 ± 1 | 11 ± 1 | 14 ± 1 | 12 ± 1 | 12 ± 1 | 12 ± 0 | | Week 14 | 26 ± 2 | 27 ± 2 | 23 ± 1 | 26 ± 3 | 19 ± 1* | 17 ± 1** | | Bile acids (µmol/L) | | 2 | | | h | | | Day 3 | 30.2 ± 2.0 | $29.3 \pm 3.0^{\circ}$ | 25.3 ± 1.3 | $20.9 \pm 1.9*$ | 28.8 ± 5.5^{b} | 32.4 ± 2.4 | | Day 23 | 19.7 ± 0.6 | 20.3 ± 1.8 | 21.6 ± 2.1 | 22.0 ± 1.7 | 19.0 ± 1.4 | 22.3 ± 1.4 | | Week 14 | 21.5 ± 1.3 | 20.1 ± 0.9 | 21.5 ± 2.6 | 24.5 ± 3.8 | 20.2 ± 0.9 | 23.4 ± 2.9 | | Female | | | | | | | | Hematology | | | | | | | | Automated hematocrit | (%) | | | | | | | Day 3 | 41.5 ± 0.9 | 43.1 ± 0.9 | 42.3 ± 1.0 | 44.7 ± 0.9 | 44.0 ± 0.8 | 44.6 ± 0.8 | | Day 23 | 47.7 ± 0.5 | 47.3 ± 0.5 | 47.5 ± 0.7 | 46.4 ± 0.6 | 47.6 ± 0.5 | 49.3 ± 0.4 | | Week 14 | 44.0 ± 0.2 | 44.2 ± 0.2 | 43.7 ± 0.3 | 44.8 ± 0.3 | 44.0 ± 0.3 | 44.8 ± 0.4 | | Manual hematocrit (%) | | = 0.2 | 1517 — 015 | 1110 - 010 | 1110 - 015 | = | | Day 3 | 43.8 ± 0.8 | 44.5 ± 0.8 | 44.7 ± 1.0 | 46.4 ± 0.9 | 45.2 ± 0.7 | 45.4 ± 0.7 | | Day 23 | 50.2 ± 0.5 | 49.6 ± 0.3 | 49.4 ± 0.6 | 49.3 ± 0.6 | 49.5 ± 0.3 | 50.9 ± 0.6 | | Week 14 | 44.3 ± 0.3 | 44.5 ± 0.3 | 43.9 ± 0.3 | 45.2 ± 0.3 | 44.6 ± 0.3 | 45.5 ± 0.4 | | Hemoglobin (g/dL) | 44.5 ± 0.5 | TT.3 ± 0.3 | 43.7 ± 0.3 | 73.2 ± 0.3 | 44.0 ± 0.5 | 43.3 ± 0.4 | | Day 3 | 13.2 ± 0.3 | 13.6 ± 0.3 | 13.4 ± 0.4 | 13.9 ± 0.4 | 13.7 ± 0.3 | 13.8 ± 0.2 | | Day 23 | 16.0 ± 0.2 | 16.1 ± 0.2 | 15.4 ± 0.4 15.9 ± 0.2 | 15.7 ± 0.4 15.7 ± 0.3 | 15.7 ± 0.5 15.7 ± 0.1 | 16.3 ± 0.2 16.3 ± 0.1 | | Week 14 | 16.0 ± 0.2
14.7 ± 0.1 | | | | 13.7 ± 0.1
14.6 ± 0.1 | | | Week 14
Erythrocytes (10 ⁶ /μL) | 14./ ± U.1 | 14.6 ± 0.1 | 14.5 ± 0.1 | 14.9 ± 0.1 | 14.0 ± 0.1 | 14.9 ± 0.1 | | | 6.65 + 0.10 | 6.00 ± 0.16 | 6.70 ± 0.10 | 7 10 1 0 17* | 7.00 - 0.12* | 7 21 + 0 15* | | Day 3 | 6.65 ± 0.18 | 6.90 ± 0.16 | 6.79 ± 0.19 | $7.18 \pm 0.17*$ | $7.08 \pm 0.13*$ | $7.21 \pm 0.15*$ | | Day 23 | 7.38 ± 0.14 | 7.42 ± 0.12 | 7.36 ± 0.14 | 7.36 ± 0.09 | 7.51 ± 0.09 | 7.84 ± 0.11 | | Week 14
Reticulocytes (10 ⁶ /μL) | 7.57 ± 0.03 | 7.59 ± 0.04 | 7.53 ± 0.04 | 7.71 ± 0.05 | 7.60 ± 0.05 | 7.75 ± 0.07 | | | | 0.20 + 0.02 | 0.40 : 0.05 | 0.42 + 0.02 | 0.40 : 0.04 | 0.50 : 0.05 | | Day 3 | 0.39 ± 0.03 | 0.30 ± 0.03 | 0.49 ± 0.05 | 0.43 ± 0.03 | 0.42 ± 0.04 | 0.50 ± 0.05 | | Day 3 | | | | | | | | Day 3
Day 23
Week 14 | $\begin{array}{c} 0.15 \pm 0.02 \\ 0.15 \pm 0.01 \end{array}$ | 0.16 ± 0.02
0.18 ± 0.01 | 0.17 ± 0.02
0.16 ± 0.01 | 0.20 ± 0.02
0.13 ± 0.01 | 0.16 ± 0.01
0.14 ± 0.02 | 0.15 ± 0.02
0.14 ± 0.01 | TABLE F1 Hematology and Clinical Chemistry Data for Rats in the 3-Month Inhalation Study of Divinylbenzene-HP | | Chamber Control | 25 ppm | 50 ppm | 100 ppm | 200 ppm | 400 ppm | |--|------------------------------------|-------------------|-------------------|-------------------|--------------------|-------------------| | n | 10 | 10 | 10 | 10 | 10 | 10 | | Female (continued) | | | | | | | | Hematology (continue | ed) | | | | | | | Nucleated erythrocyte | es/100 leukocytes | | | | | | | Day 3 | 1.20 ± 0.29 | 0.50 ± 0.22 | $0.10 \pm 0.10*$ | 0.20 ± 0.13 | 0.60 ± 0.34 | 3.00 ± 0.84 | | Day 23 | 0.20 ± 0.13 | 0.10 ± 0.10 | 0.00 ± 0.00 | 0.10 ± 0.10 | 0.00 ± 0.00 | 0.20 ± 0.13 | | Week 14 | 0.30 ± 0.21 | 0.20 ± 0.13 | 0.40 ± 0.31 | 0.30 ± 0.15 | 0.20 ± 0.13 | 0.10 ± 0.10 | | Mean cell volume (fL | .) | | | | | | | Day 3 | 62.6 ± 0.4 | 62.3 ± 0.2 | 62.4 ± 0.5 | 62.2 ± 0.4 | 62.1 ± 0.2 | 61.8 ± 0.3 | | Day 23 | 64.7 ± 0.8 | 63.8 ± 0.7 | 64.7 ± 0.9 | 63.2 ± 0.7 | 63.3 ± 0.8 | 62.9 ± 1.0 | | Week 14 | 58.1 ± 0.1 | 58.3 ± 0.3 | 58.1 ± 0.2 | 58.0 ± 0.0 | 57.8 ± 0.3 | 57.8 ± 0.1 | | Mean cell hemoglobin | n (pg) | | | | | | | Day 3 | 19.8 ± 0.2 | 19.8 ± 0.2 | 19.8 ± 0.2 | 19.4 ± 0.2 | 19.4 ± 0.2 | $19.1 \pm 0.2*$ | | Day 23 | 21.7 ± 0.2 | 21.7 ± 0.3 | 21.6 ± 0.3 | 21.3 ± 0.3 | 20.9 ± 0.3 | 20.8 ± 0.3 | | Week 14 | 19.4 ± 0.1 | 19.2 ± 0.1 | 19.2 ± 0.1 | 19.3 ± 0.1 | 19.2 ± 0.1 | 19.2 ± 0.1 | | Mean cell hemoglobin | n concentration (g/dL) | | | | | | | Day 3 | 31.7 ± 0.3 | 31.7 ± 0.4 | 31.7 ± 0.3 | 31.2 ± 0.4 | 31.1 ± 0.3 | 30.9 ± 0.3 | | Day 23 | 33.5 ± 0.3 | 34.0 ± 0.3 | 33.4 ± 0.3 | 33.8 ± 0.3 | 33.0 ± 0.3 | 33.1 ± 0.2 | | Week 14 ₃ | 33.3 ± 0.1 | 32.9 ± 0.2 | 33.2 ± 0.1 | 33.2 ± 0.2 | 33.2 ± 0.1 | 33.1 ± 0.2 | | Platelets (10 ³ /μL) | | | | | | | | Day 3 | 790.5 ± 29.7 | 834.6 ± 30.6 | 844.4 ± 13.9 | $880.6 \pm 35.9*$ | $916.5 \pm 19.1**$ | $886.4 \pm 8.3**$ | | Day 23 | 845.2 ± 38.3 | 859.6 ± 26.1 | 881.2 ± 32.2 | 834.8 ± 36.6 | 903.3 ± 36.8 | 952.5 ± 36.4 | | Week 14 | 575.4 ± 7.1 | 561.1 ± 15.4 | 579.6 ± 6.8 | 593.3 ± 21.3 | 591.2 ± 15.2 | 598.7 ± 7.4 | | Leukocytes (10 ³ /μL) | | | | | | | | Day 3 | 8.38 ± 0.79 | 10.11 ± 0.67 | 9.02 ± 0.70 | 10.00 ± 0.77 | 6.89 ± 0.66 | $5.41 \pm 0.58*$ | | Day 23 | 13.86 ± 0.52 | 14.06 ± 0.42 | 12.76 ± 0.35 | $12.08 \pm 0.46*$ | $11.63 \pm 0.40**$ | $8.76 \pm 0.54**$ | | Week 14 | 6.54 ± 0.27 | 6.69 ± 0.36 | 6.73 ± 0.27 | 7.74 ± 0.44 | 6.69 ± 0.31 | 7.09 ± 0.34 | | Segmented neutrophil | $(10^3/\mu L)$ | | | | | | | Day 3 | 0.73 ± 0.07 | 0.90 ± 0.15 | 0.88 ± 0.07 | 0.97 ± 0.15 | 0.70 ± 0.08 | 0.76 ± 0.07 | | Day 23 | 0.92 ± 0.09 | 0.96 ± 0.18 | 1.29 ± 0.15 | 0.78 ± 0.14 | 0.96 ± 0.06 | 0.96 ± 0.13 | | Week 14 | 1.11 ± 0.11 | 0.97 ± 0.08 | 1.15 ± 0.13 | 1.17 ± 0.11 | 0.98 ± 0.07 | 0.96 ± 0.10 | | Bands $(10^3/\mu L)$ | | | | | | | | Day 3 | 0.00 ± 0.00 | | Day 23 | 0.00 ± 0.00 | | Week 14 | 0.00 ± 0.00 | | Lymphocytes (10 ³ /μL | L) | | | | | | | Day 3 | 7.41 ± 0.77 | 8.94 ± 0.62 | 7.96 ± 0.68 | 8.63 ± 0.66 | 6.08 ± 0.59 | 4.58 ± 0.57 * | | Day 23 | 12.64 ± 0.53 | 12.95 ± 0.36 | $11.23 \pm 0.28*$ | $11.18 \pm 0.42*$ | $10.48 \pm 0.43**$ | $7.69 \pm 0.54**$ | | Week 14 | 5.38 ± 0.19 | 5.64 ± 0.33 | 5.49 ± 0.28 | 6.47 ± 0.40 | 5.59 ± 0.31 | 6.00 ± 0.31 | | Monocytes $(10^3/\mu L)$ | | | | | | | | Day 3 | 0.21 ± 0.03 | 0.23 ± 0.07 | 0.17 ± 0.04 | 0.35 ± 0.10 | $0.08 \pm 0.03*$ | $0.06 \pm 0.02**$ | | Day 23 | 0.27 ± 0.09 | 0.13 ± 0.03 | 0.17 ± 0.04 | 0.06 ± 0.03 | 0.11 ± 0.04 | $0.03 \pm 0.02**$ | | Week 14 | 0.04 ± 0.02 | 0.06 ± 0.04 | 0.06 ± 0.02 | 0.04 ± 0.01 | 0.07 ± 0.03 | 0.06 ± 0.03 | | Basophils (10 ³ /μL) | | | | | | | | Day 3 |
0.000 ± 0.000 | | Day 23 | 0.000 ± 0.000 | | Week 14 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.008 ± 0.008 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.000 ± 0.000 | | Eosinophils $(10^3/\mu L)$ | | | | | | | | Day 3 | 0.03 ± 0.02 | 0.04 ± 0.02 | 0.02 ± 0.01 | 0.05 ± 0.02 | 0.02 ± 0.01 | 0.01 ± 0.01 | | Day 23 | 0.03 ± 0.02 | 0.03 ± 0.02 | 0.08 ± 0.04 | 0.06 ± 0.02 | 0.08 ± 0.03 | 0.08 ± 0.03 | | Week 14 | 0.03 ± 0.02
0.01 ± 0.01 | 0.01 ± 0.01 | 0.03 ± 0.01 | 0.06 ± 0.02 | 0.05 ± 0.02 | 0.07 ± 0.03 | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.01 ± 0.01 | 0.01 - 0.01 | 0.05 ± 0.01 | 0.00 ± 0.02 | 0.00 ± 0.02 | 0.07 = 0.00 | TABLE F1 Hematology and Clinical Chemistry Data for Rats in the 3-Month Inhalation Study of Divinylbenzene-HP | | Chamber Control | 25 ppm | 50 ppm | 100 ppm | 200 ppm | 400 ppm | |---|------------------------|-----------------|-----------------|------------------|------------------|------------------| | n | 10 | 10 | 10 | 10 | 10 | 10 | | Female (continued) | | | | | | | | Clinical Chemistry | | | | | | | | Urea nitrogen (mg/dL) | | | | | | | | Day 3 | 6.8 ± 0.4 | 7.9 ± 0.3 | 8.1 ± 0.6 | $10.9 \pm 0.4**$ | $15.4 \pm 0.6**$ | $20.7 \pm 1.2**$ | | Day 23 | 9.7 ± 0.4 | 9.9 ± 0.3 | 10.0 ± 0.3 | 10.4 ± 0.3 | $14.2 \pm 0.4**$ | $17.0 \pm 0.4**$ | | Week 14 | 13.7 ± 0.5 | 13.0 ± 0.9 | 13.5 ± 0.5 | 14.2 ± 0.5 | 12.4 ± 0.5 | $11.4 \pm 0.5*$ | | Creatinine (mg/dL) | | | | | | | | Day 3 | 0.60 ± 0.02 | 0.59 ± 0.01 | 0.66 ± 0.02 | 0.61 ± 0.01 | 0.67 ± 0.02 | 0.62 ± 0.02 | | Day 23 | 0.68 ± 0.02 | 0.65 ± 0.02 | 0.69 ± 0.01 | 0.69 ± 0.01 | 0.68 ± 0.01 | 0.72 ± 0.01 | | Week 14 | 0.75 ± 0.02 | 0.73 ± 0.02 | 0.76 ± 0.02 | 0.78 ± 0.03 | 0.75 ± 0.02 | 0.74 ± 0.02 | | Total protein (g/dL) | | | | | | | | Day 3 | 5.8 ± 0.1 | 5.9 ± 0.1 | 5.7 ± 0.1 | 5.7 ± 0.1 | 5.8 ± 0.1 | 5.8 ± 0.1 | | Day 23 | 5.9 ± 0.1 | 5.9 ± 0.1 | 6.0 ± 0.0 | 5.9 ± 0.0 | 5.8 ± 0.1 | 6.0 ± 0.1 | | Week 14 | 7.0 ± 0.1 | 6.8 ± 0.1 | 6.9 ± 0.1 | 6.8 ± 0.1 | $6.6 \pm 0.1*$ | $6.5 \pm 0.1**$ | | Albumin (g/dL) | | | | | | | | Day 3 | 3.8 ± 0.1 | 3.7 ± 0.1 | 3.7 ± 0.1 | 3.8 ± 0.1 | 4.0 ± 0.1 | 3.8 ± 0.1 | | Day 23 | 3.9 ± 0.1 | 3.8 ± 0.1 | 3.8 ± 0.1 | 3.7 ± 0.1 | 3.8 ± 0.1 | 3.9 ± 0.1 | | Week 14 | 4.5 ± 0.0 | 4.3 ± 0.1 | 4.5 ± 0.0 | 4.4 ± 0.1 | $4.2 \pm 0.1**$ | $4.1 \pm 0.1**$ | | Globulin (g/dL) | | | | | | | | Day 3 | 2.0 ± 0.1 | 2.2 ± 0.1 | 1.9 ± 0.1 | 1.9 ± 0.1 | 1.8 ± 0.1 | 2.0 ± 0.1 | | Day 23 | 2.0 ± 0.1 | 2.1 ± 0.1 | 2.2 ± 0.1 | 2.2 ± 0.1 | 2.0 ± 0.1 | 2.1 ± 0.1 | | Week 14 | 2.5 ± 0.1 | 2.5 ± 0.1 | 2.5 ± 0.1 | 2.4 ± 0.0 | 2.5 ± 0.1 | 2.3 ± 0.1 | | Albumin/globulin ratio | | | | | | | | Day 3 | 2.0 ± 0.1 | 1.7 ± 0.1 | 2.0 ± 0.1 | 2.0 ± 0.1 | 2.3 ± 0.2 | 2.0 ± 0.2 | | Day 23 | 1.9 ± 0.1 | 1.9 ± 0.1 | 1.8 ± 0.1 | 1.7 ± 0.1 | 1.9 ± 0.1 | 1.9 ± 0.1 | | Week 14 | 1.8 ± 0.1 | 1.8 ± 0.1 | 1.8 ± 0.1 | 1.8 ± 0.0 | 1.7 ± 0.0 | 1.8 ± 0.1 | | Alanine aminotransferas | | | | | | | | Day 3 | 48 ± 2 | 45 ± 1 | 47 ± 2 | 49 ± 1 | 46 ± 2 | 45 ± 2 | | Day 23 | 34 ± 1 | 34 ± 1 | 33 ± 1 | 32 ± 1 | 31 ± 1 | 31 ± 1 | | Week 14 | 54 ± 5 | 53 ± 3 | 59 ± 7 | 47 ± 3 | 49 ± 4 | 39 ± 1** | | Alkaline phosphatase (I | | | | | | | | Day 3 | 733 ± 27 | 717 ± 22 | 728 ± 25 | 672 ± 21 | 683 ± 21 | 609 ± 16** | | Day 23 | 429 ± 11 | 431 ± 12 | 427 ± 16 | 433 ± 8 | 437 ± 13 | 429 ± 13 | | Week 14 | 314 ± 7 | 288 ± 12 | 291 ± 8 | 307 ± 9 | 287 ± 10 | $280 \pm 7*$ | | Creatine kinase (IU/L) | | | | | | | | Day 3 | 299 ± 20 | 230 ± 28 | 391 ± 55 | 413 ± 71 | 343 ± 32 | 357 ± 83 | | Day 23 | 292 ± 35^{b} | 284 ± 46 | 294 ± 29 | 253 ± 21 | 309 ± 72 | 323 ± 79 | | Week 14 | 229 ± 26 | 247 ± 29 | 208 ± 17 | 202 ± 26 | 228 ± 20 | 264 ± 29 | | Sorbitol dehydrogenase | | | | | | | | Day 3 | 14 ± 1 | 14 ± 0 | 15 ± 1 | 14 ± 1 | 14 ± 1 | 14 ± 1 | | Day 23 | 14 ± 1 | 14 ± 0 | 14 ± 1 | 15 ± 1 | 15 ± 1 | 16 ± 1 | | Week 14 | 16 ± 1 | 16 ± 1 | 18 ± 2 | 16 ± 1 | 15 ± 1 | $13 \pm 0*$ | | Bile acids (µmol/L) | 10 1 | | 10 = 2 | 10 - 1 | | 15 = 0 | | Day 3 | 20.1 ± 1.5 | 16.5 ± 0.9 | 21.2 ± 1.3 | 19.8 ± 2.9 | 22.3 ± 2.1 | 22.0 ± 2.1 | | Day 23 | 16.4 ± 1.8 | 18.0 ± 2.1 | 20.0 ± 2.0 | 16.8 ± 1.1 | 15.8 ± 1.0 | $21.1 \pm 1.0*$ | | Week 14 | 18.1 ± 1.6 | 21.2 ± 3.2 | 19.4 ± 2.1 | 16.7 ± 3.4 | 15.8 ± 1.5 | 19.0 ± 1.8 | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 10.1 = 1.0 | | 17 2.1 | 10.7 - 0.1 | 10.0 = 1.0 | 17.5 = 1.0 | ^{*} Significantly different (P $\!\leq\!0.05)$ from the chamber control group by Dunn's or Shirley's test ** $P\!\leq\!0.01$ a Mean ± standard error. Statistical tests were performed on unrounded data. n=9 n=8 TABLE F2 Hematology Data for Mice in the 3-Month Inhalation Study of Divinylbenzene-HP^a | | Chamber Control | 12.5 ppm | 25 ppm | 50 ppm | 100 ppm | 200 ppn | |--|----------------------------------|----------------------------------|-------------------|----------------------------------|-------------------|----------------| | Male | | | | | | | | n | 10 | 10 | 10 | 10 | 10 | 0 | | Automated hematocrit (%) | 49.3 ± 0.4 | 50.0 ± 0.3 | 50.0 ± 0.3 | 49.6 ± 0.4 | 48.9 ± 0.3 | | | Manual hematocrit (%) | 49.3 ± 0.4
49.1 ± 0.4 | 50.0 ± 0.3
50.0 ± 0.3 | 49.9 ± 0.3 | 49.6 ± 0.4
49.6 ± 0.4 | 48.7 ± 0.3 | | | Hemoglobin (g/dL) | 15.8 ± 0.1 | 16.1 ± 0.1 | 16.2 ± 0.1 | 16.1 ± 0.1 | 15.6 ± 0.1 | | | | | | | | | | | Erythrocytes (10 ⁶ /µL) | 10.23 ± 0.07 | 10.33 ± 0.07 | 10.38 ± 0.04 | 10.24 ± 0.09 | 10.09 ± 0.04 | | | Reticulocytes (10 ⁶ /µL) | 0.22 ± 0.01 | 0.20 ± 0.01 | 0.21 ± 0.01 | 0.21 ± 0.01 | 0.20 ± 0.01 | | | Nucleated erythrocytes | 0.00 + 0.00 | 0.00 + 0.00 | 0.00 + 0.00 | 0.00 + 0.00 | 0.00 + 0.00 | | | /100 leukocytes | 0.00 ± 0.00 | | | Howell-Jolly bodies | | 0.4 . 0.0 | 0.4 . 0.0 | 0.4 . 0.0 | 0.4 . 0.0 | | | (% erythrocytes) | 0.0 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | | | Mean cell volume (fL) | 48.3 ± 0.2 | 48.3 ± 0.2 | 48.1 ± 0.2 | 48.4 ± 0.2 | 48.6 ± 0.2 | | | Mean cell hemoglobin (pg) | 15.5 ± 0.1 | 15.6 ± 0.1 | 15.6 ± 0.1 | 15.7 ± 0.1 | 15.4 ± 0.1 | | | Mean cell hemoglobin | | | | | | | | concentration (g/dL) | 32.1 ± 0.2 | 32.2 ± 0.1 | 32.4 ± 0.2 | 32.4 ± 0.1 | 31.8 ± 0.2 | | | Platelets (10 ³ /µĻ) | 954.2 ± 30.6 | 895.3 ± 17.3 | 871.1 ± 16.9 | 904.5 ± 40.1 | 912.3 ± 11.1 | | | Leukocytes (10 ³ /μL) | 2.69 ± 0.27 | 2.13 ± 0.16 | 2.53 ± 0.28 | 2.71 ± 0.19 | 2.16 ± 0.15 | | | Segmented neutrophils (10 ³ /μI | (0.34 ± 0.07) | 0.23 ± 0.04 | 0.35 ± 0.05 | 0.31 ± 0.03 | 0.30 ± 0.04 | | | Bands $(10^3/\mu L)_2$ | 0.00 ± 0.00 | | | Lymphocytes ($\frac{1}{2}$ 0 ³ /μL) | 2.32 ± 0.23 | 1.87 ± 0.14 | 2.14 ± 0.23 | 2.36 ± 0.18 | 1.83 ± 0.13 | | | Monocytes $(10^3/\mu L)$ | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.00 ± 0.00 | | | Basophils (10 ³ /μL) | 0.000 ± 0.000 | | | Eosinophils (10 ³ /μL) | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.04 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.01 | | | Female | | | | | | | | 1 | 10 | 10 | 10 | 10 | 10 | 1 ^b | | Automated hematocrit (%) | 51.0 ± 0.4 | 50.3 ± 0.4 | 50.0 ± 0.2 | $49.5 \pm 0.4*$ | 49.3 ± 0.3** | 44.6 | | Manual hematocrit (%) | 51.0 ± 0.3 | 50.8 ± 0.3 | $50.0 \pm 0.2*$ | 49.6 ± 0.5 * | $49.3 \pm 0.3**$ | 44.5 | | Hemoglobin (g/dL) | 16.5 ± 0.1 | 16.4 ± 0.1 | $16.2 \pm 0.1**$ | $16.0 \pm 0.1**$ | $16.0 \pm 0.1**$ | 14.2 | | Erythrocytes (10 ⁶ /μL) | 10.34 ± 0.08 | $10.05 \pm 0.07*$ | $10.10 \pm 0.03*$ | $10.06 \pm 0.07*$ | $9.91 \pm 0.07**$ | 9.01 | | Reticulocytes (10 ⁶ /μL) | 0.25 ± 0.02 | 0.24 ± 0.01 | 0.21 ± 0.01 | $0.20 \pm 0.01*$ | $0.20 \pm 0.01*$ | 0.17 | | Nucleated erythrocytes | | | | | | | | /100 leukocytes | 0.00 ± 0.00 | 0.00 | | Howell-Jolly bodies | | | | | | | | (% erythrocytes) | 0.0 ± 0.0 | 0.1 ± 0.0 | 0.0 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.2 | | Mean cell volume (fL) | 49.2 ± 0.1 | 50.2 ± 0.2** | 49.4 ± 0.3 | 49.2 ± 0.1 | 49.6 ± 0.2 | 50.0 | | Mean cell hemoglobin (pg) | 16.0 ± 0.1 | 16.3 ± 0.1 | 16.0 ± 0.1 | 15.9 ± 0.1 | 16.1 ± 0.1 | 15.7 | | Mean cell hemoglobin | 10.0 = 0.1 | 10.5 = 0.1 | 10.0 = 0.1 | 13.7 = 0.1 | 10.1 = 0.1 | 13.7 | | concentration (g/dL) | 32.5 ± 0.1 | 32.6 ± 0.2 | 32.4 ± 0.2 | 32.2 ± 0.2 | 32.5 ± 0.2 | 31.7 | | Platelets (10 ³ /µL) | 924.5 ± 54.2 | $811.7 \pm 21.9*$ | 858.2 ± 7.6 | 826.0 ± 15.8 | 815.7 ± 12.4 | 961.0 | | Leukocytes $(10^{7}/\mu L)$ | 3.42 ± 0.25 | 3.88 ± 0.16 | 3.12 ± 0.21 | 3.24 ± 0.19 | 2.91 ± 0.31 | 1.50 | | Segmented neutrophils (10 ³ /μΙ | | 0.55 ± 0.08 | | | | | | Bands (10 ³ /μL) | | | 0.28 ± 0.03 | 0.41 ± 0.07 | 0.48 ± 0.13 | 0.42 | | sands $(10^{3}/\mu L)$
symphocytes $(10^{3}/\mu L)$ | 0.00 ± 0.00 | 0.00 | | Januarytas (10 ³ / ₁ , 1) | 3.00 ± 0.24 | 3.29 ± 0.14 | 2.80 ± 0.19 | 2.81 ± 0.14 | 2.40 ± 0.19 | 1.05 | | Monocytes
$(10^3/\mu L)$ | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.00 | 0.02 | | Basophils $(10^3/\mu L)$ | 0.000 ± 0.000 | 0.000 | | Eosinophils (10 ³ /μL) | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.03 ± 0.01 | 0.02 | ^{*} Significantly different (P \leq 0.05) from the chamber control group by Dunn's or Shirley's test ^{**} P≤0.01 Mean ± standard error. Statistical tests were performed on unrounded data. All 200 ppm male mice died before the end of the study; no data are available for this group. b No standard error was calculated or pairwise test performed for this exposure group because only single measurements were available. ### APPENDIX G ORGAN WEIGHTS AND ORGAN-WEIGHT-TO-BODY-WEIGHT RATIOS | TABLE G1 | Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats | | |----------|---|-------------| | | in the 2-Week Inhalation Study of Divinylbenzene-HP | G-2 | | TABLE G2 | Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats | | | | in the 3-Month Inhalation Study of Divinylbenzene-HP | G-3 | | TABLE G3 | Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice | | | | in the 2-Week Inhalation Study of Divinylbenzene-HP | G- 4 | | TABLE G4 | Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice | | | | in the 3-Month Inhalation Study of Divinylbenzene-HP | G-5 | TABLE G1 Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats in the 2-Week Inhalation Study of Divinylbenzene-HP^a | | Chamber Control | 25 ppm | 50 ppm | 100 ppm | 200 ppm | 400 ppm | |------------------|------------------------|----------------------|--|----------------------|----------------------|----------------------------| | n | 5 | 5 | 5 | 5 | 5 | 5 | | Male | | | | | | | | Necropsy body wt | 151 ± 5 | 152 ± 6 | 155 ± 6 | 138 ± 2 | 142 ± 5 | 135 ± 5* | | Heart | | | | | | | | Absolute | 0.566 ± 0.018 | 0.588 ± 0.022 | 0.612 ± 0.019 | 0.526 ± 0.005 | 0.538 ± 0.017 | 0.532 ± 0.018 | | Relative | 3.748 ± 0.084 | 3.879 ± 0.044 | $3.946 \pm 0.049*$ | 3.816 ± 0.041 | 3.804 ± 0.032 | 3.934 ± 0.041 | | R. Kidney | | | | | | | | Absolute | 0.594 ± 0.029 | 0.626 ± 0.018 | 0.662 ± 0.021 | 0.598 ± 0.011 | 0.652 ± 0.030 | 0.638 ± 0.033 | | Relative | 3.923 ± 0.088 | 4.134 ± 0.045 | $4.271 \pm 0.092**$ | $4.336 \pm 0.041**$ | $4.602 \pm 0.069**$ | $4.709 \pm 0.134**$ | | Liver | 3.723 = 0.000 | 1.131 = 0.013 | 1.271 = 0.072 | 1.550 = 0.011 | 1.002 = 0.009 | 1.707 = 0.151 | | Absolute | 6.108 ± 0.283 | 6.456 ± 0.209 | 6.726 ± 0.261 | 5.988 ± 0.178 | 6.762 ± 0.451 | 7.096 ± 0.329 | | Relative | 40.358 ± 0.879 | 42.622 ± 0.676 | 43.333 ± 0.799 | 43.415 ± 1.085 | $47.614 \pm 1.684**$ | $52.466 \pm 1.619**$ | | Lung | 40.556 ± 0.675 | 42.022 ± 0.070 | 43.333 ± 0.777 | 45.415 ± 1.005 | 77.017 ± 1.007 | 32.400 ± 1.017 | | Absolute | 1.122 ± 0.041 | 1.304 ± 0.063 | 1.344 ± 0.117 | 1.238 ± 0.124 | 1.138 ± 0.061 | 1.194 ± 0.056 | | Relative | 7.420 ± 0.084 | 8.627 ± 0.421 | 8.659 ± 0.688 | 8.991 ± 0.926 | 8.038 ± 0.313 | 8.861 ± 0.463 | | R. Testis | 7.420 ± 0.084 | 6.027 ± 0.421 | 6.039 ± 0.066 | 6.991 ± 0.920 | 6.038 ± 0.313 | 0.001 ± 0.403 | | Absolute | 0.947 ± 0.024 | 0.949 ± 0.046 | 0.980 ± 0.039 | 0.920 ± 0.088 | 0.932 ± 0.028 | 0.933 ± 0.040 | | Relative | 6.276 ± 0.105 | 6.252 ± 0.143 | | 6.647 ± 0.548 | 6.590 ± 0.028 | 6.894 ± 0.111 | | Thymus | 0.270 ± 0.103 | 0.232 ± 0.143 | 6.310 ± 0.071 | 0.047 ± 0.348 | 0.390 ± 0.070 | 0.894 ± 0.111 | | Absolute | 0.420 + 0.021 | 0.468 ± 0.018 | 0.438 ± 0.014 | 0.206 + 0.015 | 0.205 + 0.007 | 0.266 + 0.010* | | | 0.429 ± 0.021 | | | 0.396 ± 0.015 | 0.395 ± 0.007 | $0.366 \pm 0.018*$ | | Relative | 2.837 ± 0.121 | 3.097 ± 0.143 | 2.831 ± 0.090 | 2.876 ± 0.124 | 2.806 ± 0.114 | 2.707 ± 0.093 | | Female | | | | | | | | Necropsy body wt | 112 ± 2 | 115 ± 2 | 112 ± 3 | 111 ± 2 | 106 ± 2 | $104 \pm 2*$ | | Heart | | | | | | | | Absolute | 0.454 ± 0.005 | 0.488 ± 0.014 | 0.478 ± 0.013 | 0.472 ± 0.010 | 0.448 ± 0.006 | 0.464 ± 0.024 | | Relative | 4.061 ± 0.116 | 4.252 ± 0.119 | 4.291 ± 0.160 | 4.255 ± 0.149 | 4.218 ± 0.080 | 4.482 ± 0.237 | | R. Kidney | | | | | | | | Absolute | 0.462 ± 0.008 | $0.526 \pm 0.021*$ | $0.522 \pm 0.016*$ | $0.528 \pm 0.006**$ | $0.516 \pm 0.014*$ | $0.520 \pm 0.009*$ | | Relative | 4.127 ± 0.070 | $4.574 \pm 0.106**$ | $4.671 \pm 0.031**$ | $4.754 \pm 0.093**$ | $4.854 \pm 0.097**$ | 5.022 ± 0.093** | | Liver | 27 = 0.070 | | 11071 = 01001 | | | 0.022 = 0.055 | | Absolute | 4.382 ± 0.055 | $4.812 \pm 0.170*$ | $4.738 \pm 0.155*$ | 4.840 ± 0.101 * | $4.762 \pm 0.122*$ | 5.220 ± 0.071** | | Relative | 39.142 ± 0.303 | $41.893 \pm 1.130**$ | $42.412 \pm 0.660**$ | $43.529 \pm 0.509**$ | $44.774 \pm 0.498**$ | $50.418 \pm 0.711**$ | | Lung | 57.112 ± 0.305 | .1.0/5 - 1.150 | 12.112 - 0.000 | .5.52) = 0.50) | 11.771 - 0.470 | 30.110 ± 0./11 | | Absolute | 0.808 ± 0.016 | $1.050 \pm 0.015*$ | $1.028 \pm 0.068*$ | 1.000 ± 0.075 | 0.974 ± 0.069 | 0.832 ± 0.029 | | Relative | 7.224 ± 0.202 | $9.152 \pm 0.152*$ | $9.259 \pm 0.747*$ | 8.981 ± 0.611 | $9.158 \pm 0.610*$ | 8.049 ± 0.363 | | Thymus | 1.227 ± 0.202 | 7.132 ± 0.132 | 7.437 ± 0.171 | 0.701 ± 0.011 | 7.130 ± 0.010 | 0.0 1 / ± 0.303 | | Absolute | 0.380 ± 0.020 | 0.388 ± 0.021 | 0.398 ± 0.022 | 0.394 ± 0.020 | 0.365 ± 0.011 | 0.353 ± 0.010 | | Relative | 3.393 ± 0.020 | 3.377 ± 0.141 | 3.558 ± 0.022
3.558 ± 0.159 | 3.541 ± 0.135 | 3.435 ± 0.090 | 3.412 ± 0.143 | | TC1ati vC | J.J/J ± 0.1/1 | 5.577 = 0.171 | J.JJO = 0.1J/ | J.J = 0.133 | J. 733 ± 0.070 | J. 712 ± 0.17J | ^{*} Significantly different ($P \le 0.05$) from the chamber control group by Williams' or Dunnett's test ** $P \le 0.01$ Organ weights (absolute weights) and body weights are given in grams; organ-weight-to-body-weight ratios (relative weights) are given as mg organ weight/g body weight (mean \pm standard error). TABLE G2 Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats in the 3-Month Inhalation Study of Divinylbenzene-HP^a | | Chamber Control | 25 ppm | 50 ppm | 100 ppm | 200 ppm | 400 ppm | |------------------|------------------------|----------------------|----------------------|----------------------|----------------------|----------------------| | n | 10 | 10 | 10 | 10 | 10 | 10 | | Male | | | | | | | | Necropsy body wt | 302 ± 4 | 315 ± 7 | 306 ± 4 | 300 ± 8 | 289 ± 9 | 273 ± 5** | | Heart | | | | | | | | Absolute | 0.823 ± 0.019 | 0.869 ± 0.020 | 0.830 ± 0.011 | 0.819 ± 0.019 | 0.839 ± 0.036 | 0.789 ± 0.013 | | Relative | 2.722 ± 0.043 | 2.761 ± 0.036 | 2.715 ± 0.019 | 2.730 ± 0.025 | $2.895 \pm 0.056**$ | $2.893 \pm 0.039**$ | | R. Kidney | | | | | | | | Absolute | 0.864 ± 0.018 | $0.952 \pm 0.019*$ | 0.917 ± 0.012 | 0.923 ± 0.026 | 0.925 ± 0.033 | $0.975 \pm 0.018**$ | | Relative | 2.856 ± 0.035 | $3.026 \pm 0.034**$ | $3.001 \pm 0.035**$ | $3.074 \pm 0.024**$ | $3.198 \pm 0.056**$ | 3.570 ± 0.029** | | Liver | | | | | | | | Absolute | 9.121 ± 0.197 | $10.127 \pm 0.234*$ | 9.773 ± 0.186 | 9.601 ± 0.341 | 9.401 ± 0.297 | 9.432 ± 0.178 | | Relative | 30.145 ± 0.379 | $32.177 \pm 0.471**$ | $31.981 \pm 0.556**$ | $31.914 \pm 0.378**$ | $32.506 \pm 0.270**$ | $34.557 \pm 0.544**$ | | Lung | 30.113 = 0.373 | 32.177 = 0.171 | 31.901 = 0.550 | 31.711 = 0.370 | 32.300 = 0.270 | 31.337 = 0.311 | | Absolute | 1.582 ± 0.038 | 1.594 ± 0.045 | 1.496 ± 0.025 | 1.572 ± 0.043 | 1.497 ± 0.038 | 1.432 ± 0.029** | | Relative | 5.236 ± 0.124 | 5.061 ± 0.077 | 4.897 ± 0.088 | 5.247 ± 0.113 | 5.194 ± 0.106 | 5.245 ± 0.65 | | R. Testis | 3.230 = 0.121 | 3.001 = 0.077 | 1.057 = 0.000 | 3.217 = 0.113 | 3.171 = 0.100 | 3.2 13 = 0.03 | | Absolute | 1.317 ± 0.016 | 1.373 ± 0.017 | 1.309 ± 0.032 | 1.325 ± 0.024 | 1.325 ± 0.043 | 1.278 ± 0.021 | | Relative | 4.362 ± 0.077 | 4.369 ± 0.057 | 4.279 ± 0.066 | 4.427 ± 0.072 | $4.590 \pm 0.107*$ | $4.682 \pm 0.048**$ | | Thymus | 1.502 = 0.077 | 1.507 = 0.057 | 1.277 = 0.000 | 1.127 = 0.072 | 1.570 = 0.107 | 1.002 = 0.010 | | Absolute | 0.285 ± 0.013 | 0.306 ± 0.011 | 0.300 ± 0.013 | 0.276 ± 0.011 | 0.269 ± 0.013 | 0.260 ± 0.012 | | Relative | 0.944 ± 0.049 | 0.975 ± 0.041 | 0.983 ± 0.044 | 0.921 ± 0.034 | 0.935 ± 0.046 | 0.955 ± 0.053 | | Female | | | | | | | | Necropsy body wt | 182 ± 3 | 185 ± 4 | 196 ± 4 | 183 ± 3 | 177 ± 5 | 178 ± 4 | | Heart | | | | | | | | Absolute | 0.596 ± 0.010 | 0.603 ± 0.011 | 0.619 ± 0.010 | 0.582 ± 0.011 | 0.596 ± 0.014 | 0.594 ± 0.012 | | Relative | 3.269 ± 0.034 | 3.272 ± 0.057 | 3.164 ± 0.034 | 3.177 ± 0.028 | 3.388 ± 0.086 | 3.335 ± 0.045 | | R. Kidney | | | | | | | | Absolute | 0.599 ± 0.013 | 0.609 ± 0.012 | 0.624 ± 0.011 | 0.596 ± 0.015 | 0.596 ± 0.018 | 0.656 ± 0.016 * | | Relative | 3.285 ± 0.036 | 3.300 ± 0.035 | 3.191 ± 0.038 | 3.253 ± 0.064 | 3.378 ± 0.064 | 3.680 ± 0.052** | | Liver | | | | | | | | Absolute | 5.502 ± 0.150 | 5.524 ± 0.151 | 5.920 ± 0.188 | 5.527 ± 0.173 | 5.421 ± 0.177 | $6.506 \pm 0.221**$ | | Relative | 30.189 ± 0.654 | 29.896 ± 0.425 | 30.233 ± 0.656 | 30.105 ± 0.554 | 30.726 ± 0.697 | $36.419 \pm
0.657**$ | | Lung | | | 0.000 | | | | | Absolute | 1.128 ± 0.035 | 1.149 ± 0.027 | 1.136 ± 0.029 | 1.096 ± 0.020 | 1.055 ± 0.025 | 1.116 ± 0.031 | | Relative | 6.182 ± 0.119 | 6.227 ± 0.123 | 5.810 ± 0.123 | 5.990 ± 0.122 | 6.007 ± 0.190 | 6.260 ± 0.137 | | Thymus | 0.102 - 0.117 | | 2.010 - 0.123 | -1770 - 01122 | 2.007 - 0.170 | 3.200 - 3.257 | | Absolute | 0.239 ± 0.009 | 0.255 ± 0.006 | 0.262 ± 0.009 | 0.247 ± 0.010 | 0.256 ± 0.016 | 0.215 ± 0.008 | | Relative | 1.309 ± 0.034 | 1.384 ± 0.041 | 1.341 ± 0.045 | 1.347 ± 0.042 | 1.450 ± 0.082 | 1.207 ± 0.040 | ^{*} Significantly different ($P \le 0.05$) from the chamber control group by Williams' or Dunnett's test ^{**} P≤0.01 Organ weights (absolute weights) and body weights are given in grams; organ-weight-to-body-weight ratios (relative weights) are given as mg organ weight/g body weight (mean ± standard error). TABLE G3 Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice in the 2-Week Inhalation Study of Divinylbenzene-HP^a | | Chamber Control | 25 ppm | 50 ppm | 100 ppm | 200 ppm | 400 ppm | |------------------|---|---------------------|---------------------|----------------------|----------------------|---------| | n | 5 | 5 | 5 | 5 | 3 | 0 | | Male | | | | | | | | Necropsy body wt | 28.7 ± 0.2 | 26.5 ± 0.6 * | 26.2 ± 0.8 * | 25.7 ± 0.5** | 23.3 ± 1.35 ** | | | Heart | | | | | | | | Absolute | 0.134 ± 0.004 | 0.114 ± 0.004 | 0.114 ± 0.002 | 0.138 ± 0.009 | 0.130 ± 0.015 | | | Relative | 4.673 ± 0.114 | 4.312 ± 0.144 | 4.356 ± 0.087 | 5.374 ± 0.307 | 5.548 ± 0.484 | | | R. Kidney | | | | | | | | Absolute | 0.250 ± 0.005 | 0.228 ± 0.015 | 0.236 ± 0.008 | 0.226 ± 0.002 | 0.230 ± 0.000 | | | Relative | 8.720 ± 0.150 | 8.584 ± 0.376 | 9.004 ± 0.179 | 8.819 ± 0.182 | $9.912 \pm 0.510*$ | | | Liver | | | | | | | | Absolute | 1.394 ± 0.022 | 1.342 ± 0.045 | 1.252 ± 0.043 | 1.366 ± 0.040 | 1.537 ± 0.041 | | | Relative | 48.635 ± 0.646 | 50.716 ± 1.202 | 47.751 ± 0.581 | $53.232 \pm 1.174**$ | $66.062 \pm 2.076**$ | | | Lung | | | | | | | | Absolute | 0.200 ± 0.003 | 0.206 ± 0.014 | 0.190 ± 0.009 | 0.200 ± 0.007 | 0.177 ± 0.018 | | | Relative | 6.978 ± 0.093 | 7.764 ± 0.382 | 7.249 ± 0.284 | 7.786 ± 0.152 | 7.536 ± 0.354 | | | R. Testis | | | | | | | | Absolute | 0.100 ± 0.002 | 0.091 ± 0.004 | 0.089 ± 0.007 | 0.092 ± 0.006 | 0.090 ± 0.003 | | | Relative | 3.498 ± 0.082 | 3.469 ± 0.207 | 3.366 ± 0.173 | 3.570 ± 0.229 | 3.872 ± 0.165 | | | Thymus | | | | | | | | Absolute | 0.060 ± 0.003 | $0.044 \pm 0.005*$ | $0.044 \pm 0.005*$ | $0.039 \pm 0.006**$ | $0.019 \pm 0.003**$ | | | Relative | 2.094 ± 0.090 | 1.672 ± 0.197 | 1.701 ± 0.191 | $1.498 \pm 0.225*$ | $0.827 \pm 0.135**$ | | | Female | | | | | | | | Necropsy body wt | 20.9 ± 0.8 | 22.6 ± 0.3 | 21.8 ± 0.7 | 21.6 ± 0.5 | 20.2 ± 0.9 | | | Heart | | | | | | | | Absolute | 0.106 ± 0.002 | 0.108 ± 0.004 | 0.102 ± 0.002 | 0.108 ± 0.004 | 0.103 ± 0.009 | | | Relative | 5.090 ± 0.155 | 4.767 ± 0.122 | 4.703 ± 0.147 | 4.996 ± 0.131 | 5.089 ± 0.205 | | | R. Kidney | | | | | | | | Absolute | 0.144 ± 0.004 | $0.184 \pm 0.007**$ | $0.168 \pm 0.002**$ | $0.164 \pm 0.004*$ | $0.183 \pm 0.003**$ | | | Relative | 6.905 ± 0.156 | $8.118 \pm 0.202**$ | 7.741 ± 0.166 | 7.602 ± 0.259 | $9.109 \pm 0.547**$ | | | Liver | | | | | | | | Absolute | 0.944 ± 0.050 | $1.140 \pm 0.030 *$ | 1.084 ± 0.073 | 1.078 ± 0.020 | $1.277 \pm 0.061**$ | | | Relative | 45.086 ± 1.045 | $50.365 \pm 1.301*$ | $49.597 \pm 2.057*$ | $49.964 \pm 1.436*$ | $63.079 \pm 0.207**$ | | | Lung | 1. | | | | | | | Absolute | $0.168 \pm 0.005^{\mathrm{b}}_{\mathrm{b}}$ | $0.202 \pm 0.010**$ | 0.186 ± 0.004 | 0.178 ± 0.002 | 0.153 ± 0.003 | | | Relative | 7.796 ± 0.374^{b} | 8.910 ± 0.358 | 8.571 ± 0.241 | 8.248 ± 0.184 | 7.620 ± 0.483 | | | Thymus | | | | | | | | Absolute | 0.053 ± 0.008 | 0.067 ± 0.003 | 0.052 ± 0.004 | 0.060 ± 0.004 | 0.032 ± 0.005 | | | Relative | 2.507 ± 0.373 | 2.964 ± 0.154 | 2.401 ± 0.149 | 2.799 ± 0.182 | 1.583 ± 0.290 | | ^{*} Significantly different ($P \le 0.05$) from the chamber control group by Williams' or Dunnett's test n=4 ^{**} P≤0.01 a Organ weights (absolute weights) and body weights are given in grams; organ-weight-to-body-weight ratios (relative weights) are given as mg organ weight/g body weight (mean ± standard error). All 400 ppm male and female mice died before the end of the study; no data are available for these groups. TABLE G4 Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice in the 3-Month Inhalation Study of Divinylbenzene-HP^a | | Chamber Control | 12.5 ppm | 25 ppm | 50 ppm | 100 ppm | 200 ppm | |-------------------|------------------------|---------------------|---------------------|--|----------------------|----------------| | Male | | | | | | | | n | 10 | 10 | 10 | 10 | 10 | 0 | | Necropsy body wt | 36.8 ± 0.5 | 37.0 ± 0.7 | $33.2 \pm 0.8**$ | $31.8 \pm 0.8**$ | 31.3 ± 0.4** | | | Heart | | | | | | | | Absolute | 0.156 ± 0.002 | 0.161 ± 0.003 | $0.145 \pm 0.005*$ | $0.135 \pm 0.002**$ | $0.134 \pm 0.003**$ | | | Relative | 4.247 ± 0.053 | 4.364 ± 0.067 | 4.367 ± 0.102 | 4.268 ± 0.097 | 4.295 ± 0.115 | | | R. Kidney | 4.247 ± 0.033 | 4.504 ± 0.007 | 4.507 ± 0.102 | 4.200 ± 0.077 | 4.275 ± 0.115 | | | Absolute | 0.312 ± 0.008 | 0.306 ± 0.008 | $0.277 \pm 0.011**$ | 0.261 ± 0.005** | $0.247 \pm 0.004**$ | | | Relative | | | | | | | | | 8.481 ± 0.159 | 8.279 ± 0.110 | 8.329 ± 0.197 | 8.236 ± 0.135 | $7.911 \pm 0.153*$ | | | Liver
Absolute | 1.497 ± 0.029 | 1.522 ± 0.039 | 1.307 ± 0.052** | 1.247 ± 0.021** | 1.259 ± 0.024** | | | | | | | | | | | Relative | 40.723 ± 0.670 | 41.155 ± 0.387 | 39.314 ± 0.917 | 39.362 ± 0.545 | 40.276 ± 0.482 | | | Lung | 0.025 + 0.005 | 0.255 + 0.000 | 0.220 + 0.000 | 0.221 + 0.000 | 0.210 + 0.007 | | | Absolute | 0.235 ± 0.005 | 0.255 ± 0.008 | 0.238 ± 0.009 | 0.231 ± 0.009 | 0.219 ± 0.007 | | | Relative | 6.398 ± 0.136 | 6.907 ± 0.207 | 7.164 ± 0.190 * | $7.282 \pm 0.224**$ | 7.003 ± 0.172 | | | R. Testis | 0.445 . 0.000 | 0.404 . 0.000 | 0.44.5 . 0.000 | 0.445 . 0.000 | 0.446 . 0.004 | | | Absolute | 0.117 ± 0.002 | 0.124 ± 0.002 | 0.115 ± 0.003 | 0.117 ± 0.003 | 0.116 ± 0.001 | | | Relative | 3.191 ± 0.037 | 3.352 ± 0.052 | $3.478 \pm 0.104**$ | $3.691 \pm 0.067**$ | $3.731 \pm 0.065**$ | | | Thymus | | | | | | | | Absolute | 0.038 ± 0.002 | 0.039 ± 0.002 | 0.037 ± 0.003 | 0.035 ± 0.001 | 0.036 ± 0.003 | | | Relative | 1.043 ± 0.043 | 1.060 ± 0.043 | 1.118 ± 0.084 | 1.099 ± 0.046 | 1.166 ± 0.098 | | | Female | | | | | | | | n | 10 | 10 | 10 | 10 | 10 | 1 ^b | | Necropsy body wt | 31.1 ± 0.8 | 31.9 ± 1.2 | 28.5 ± 0.4** | 28.3 ± 0.4** | 28.1 ± 0.3** | 26.8 | | Heart | | | | | | | | Absolute | 0.140 ± 0.003 | 0.141 ± 0.005 | $0.129 \pm 0.003*$ | $0.126 \pm 0.004**$ | $0.120 \pm 0.003**$ | 0.110 | | Relative | 4.520 ± 0.123 | 4.446 ± 0.160 | 4.537 ± 0.005 | 4.447 ± 0.102 | 4.277 ± 0.106 | 4.104 | | R. Kidney | 7.320 ± 0.123 | 7.770 ± 0.100 | 4.551 = 0.075 | 7.77/ ± 0.102 | 7.2// = 0.100 | 7.107 | | Absolute | 0.197 ± 0.005 | 0.208 ± 0.004 | 0.191 ± 0.003 | 0.190 ± 0.004 | 0.196 ± 0.004 | 0.200 | | Relative | 6.348 ± 0.168 | 6.563 ± 0.145 | 6.729 ± 0.157 | 6.720 ± 0.004
6.720 ± 0.137 | $6.982 \pm 0.135**$ | 7.463 | | Liver | 0.540 ± 0.100 | 0.303 ± 0.143 | U.149 ± U.131 | 0.720 ± 0.137 | 0.704 ± 0.133 | 7.703 | | Absolute | 1.415 ± 0.052 | 1.463 ± 0.069 | 1.323 ± 0.023 | 1.204 ± 0.022** | 1.177 ± 0.026** | 1.250 | | | | | | | | | | Relative | 45.466 ± 1.128 | 45.772 ± 0.834 | 46.522 ± 0.702 | $42.534 \pm 0.529*$ | $41.907 \pm 0.841**$ | 46.642 | | Lung | 0.222 + 0.007 | 0.000 + 0.000 | 0.246 + 0.005 | 0.007 + 0.005 | 0.210 + 0.004 | 0.210 | | Absolute | 0.233 ± 0.006 | 0.266 ± 0.009 | 0.246 ± 0.005 | 0.227 ± 0.005 | 0.218 ± 0.004 | 0.210 | | Relative | 7.533 ± 0.272 | 8.382 ± 0.258 * | $8.651 \pm 0.181**$ | 8.012 ± 0.072 | 7.771 ± 0.165 | 7.836 | | Thymus | 0.045 . 0.005 | 0.045 . 0.005 | 0.045 . 0.005 | 0.004 . 0.0011 | 0.000 - 0.005 | 0.00 | | Absolute | 0.045 ± 0.002 | 0.047 ± 0.002 | 0.045 ± 0.002 | $0.036 \pm 0.004*$ | $0.038 \pm 0.001*$ | 0.026 | | Relative | 1.459 ± 0.077 | 1.477 ± 0.052 | 1.585 ± 0.071 | 1.273 ± 0.125 | 1.354 ± 0.036 | 0.970 | Significantly different (P \leq 0.05) from the chamber control group by Williams' or Dunnett's test ^{**} P≤0.01 Organ weights (absolute weights) and body weights are given in grams; organ-weight-to-body-weight ratios (relative weights) are given as mg organ weight/g body weight (mean \pm standard error). No standard error was calculated or pairwise test performed for this exposure group because only single measurements were available. ## APPENDIX H REPRODUCTIVE TISSUE EVALUATIONS AND ESTROUS CYCLE CHARACTERIZATION | TABLE H1 | Summary of Reproductive Tissue Evaluations for Male Rats | | |----------|--|-----| | | in the 3-Month Inhalation Study of Divinylbenzene-HP | H-2 | | TABLE H2 | Estrous Cycle Characterization for Female Rats | | | | in the 3-Month Inhalation Study of Divinylbenzene-HP | H-2 | | TABLE H3 | Summary of Reproductive Tissue
Evaluations for Male Mice | | | | in the 3-Month Inhalation Study of Divinylbenzene-HP | H-3 | | TABLE H4 | Estrous Cycle Characterization for Female Mice | | | | in the 3-Month Inhalation Study of Divinylbenzene-HP | H-3 | TABLE H1 Summary of Reproductive Tissue Evaluations for Male Rats in the 3-Month Inhalation Study of Divinylbenzene-HP^a | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |--|------------------------|---------------------|---------------------|---------------------| | n | 10 | 10 | 10 | 10 | | Weights (g) | | | | | | Necropsy body wt | 302 ± 4 | 300 ± 8 | 289 ± 9 | 273 ± 5** | | L. Cauda epididymis | 0.1644 ± 0.0042 | 0.1576 ± 0.0086 | 0.1539 ± 0.0068 | 0.1515 ± 0.0039 | | L. Epididymis | 0.4489 ± 0.0074 | 0.4364 ± 0.0125 | 0.4224 ± 0.0157 | 0.4187 ± 0.0109 | | L. Testis | 1.3959 ± 0.0088 | 1.3976 ± 0.0321 | 1.3839 ± 0.0406 | 1.3234 ± 0.0267 | | Spermatid measurement_ | | | | | | Spermatid heads (10 ⁷ /g testis) | 12.99 ± 0.58 | 13.42 ± 0.66 | 12.83 ± 0.66 | 13.31 ± 0.90 | | Spermatid heads (10 ⁷ /g testis)
Spermatid heads (10 ⁷ /testis) | 16.99 ± 0.72 | 17.66 ± 1.03 | 16.65 ± 0.90 | 16.85 ± 1.24 | | Epididymal spermatozoal measurements | S | | | | | Sperm (10_6^6) g cauda epididymis) | 787 ± 32 | 786 ± 51 | 818 ± 40 | 781 ± 37 | | Sperm (10 ⁶ /cauda epididymis) | 26 ± 1 | 24 ± 1 | 25 ± 2 | 24 ± 1 | | Sperm motility (%) | 77.24 ± 2.79 | 75.60 ± 3.06 | 79.21 ± 2.99 | 74.43 ± 1.76 | ^{**} Significantly different (P≤0.01) from the chamber control group by Williams' test TABLE H2 Estrous Cycle Characterization for Female Rats in the 3-Month Inhalation Study of Divinylbenzene-HP^a | | Chamber Control | 100 ppm | 200 ppm | 400 ppm | |--|-----------------|---------------|---------------|---------------| | n | 10 | 10 | 10 | 10 | | Necropsy body wt (g) | 182 ± 3 | 183 ± 3 | 177 ± 5 | 178 ± 4 | | Estrous cycle length (days)
Estrous stages (% of cycle) | 4.85 ± 0.08 | 4.75 ± 0.13 | 4.90 ± 0.07 | 4.70 ± 0.15 | | Diestrus | 38.3 | 42.5 | 41.7 | 46.7 | | Proestrus | 20.8 | 18.3 | 17.5 | 13.3 | | Estrus | 20.8 | 22.5 | 23.3 | 23.3 | | Metestrus | 20.0 | 16.7 | 16.7 | 16.7 | | Uncertain diagnoses | 0.0 | 0.0 | 0.8 | 0.0 | ^a Necropsy body weights and estrous cycle length data are presented as mean ± standard error. Differences from the chamber control group are not significant by Dunnett's test (body weight) or Dunn's test (estrous cycle length). By multivariate analysis of variance, exposed females do not differ significantly from the chamber control females in the relative length of time spent in the estrous stages. a Data are presented as mean ± standard error. Differences from the chamber control group are not significant by Dunnett's test (tissue weights) or Dunn's test (spermatid and epididymal spermatozoal measurements). $\begin{tabular}{ll} TABLE \ H3 \\ Summary \ of \ Reproductive \ Tissue \ Evaluations \ for \ Male \ Mice in the 3-Month \ Inhalation \ Study \ of \ Divinylbenzene-HP^a \\ \end{tabular}$ | | Chamber Control | 25 ppm | 50 ppm | 100 ppm | |---|----------------------|---------------------|----------------------|----------------------| | n | 10 | 10 | 10 | 10 | | Weights (g) | | | | | | Necropsy body wt | 36.8 ± 0.5 | $33.2 \pm 0.8**$ | $31.8 \pm 0.8**$ | $31.3 \pm 0.4**$ | | L. Cauda epididymis | 0.0191 ± 0.0012 | 0.0205 ± 0.0005 | 0.0194 ± 0.0008 | 0.0193 ± 0.0012 | | L. Epididymis | 0.0577 ± 0.0054 | 0.0544 ± 0.0021 | 0.0511 ± 0.0018 | 0.0536 ± 0.0023 | | L. Testis | 0.1167 ± 0.0036 | 0.1140 ± 0.0027 | 0.1146 ± 0.0022 | 0.1178 ± 0.0028 | | Spermatid measurements | | | | | | Spermatid heads $(10^{7}/g \text{ testis})$ | 23.92 ± 0.66 | 25.22 ± 1.24 | 21.65 ± 0.88^{b} | 24.07 ± 1.19^{b} | | Spermatid heads (10 ⁷ /testis) | 2.51 ± 0.07 | 2.62 ± 0.15 | 2.29 ± 0.08 | 2.50 ± 0.11 | | Epididymal spermatozoal measurements | | | | | | Sperm heads $(10^6/g)$ cauda epididymis | 1,157 \pm 98 | 1.134 ± 66 | 1.173 ± 73 | $1,315 \pm 95$ | | Sperm heads (10 /cauda epididymis) | 22 ± 2 | 23 ± 1 | 23 ± 1 | 24 ± 1 | | Sperm motility (%) | 64.16 ± 1.49^{b} | 64.98 ± 1.99 | 65.27 ± 1.13 | 59.52 ± 2.53 | ^{**} Significantly different ($P \le 0.01$) from the chamber control group by Williams' test TABLE H4 Estrous Cycle Characterization for Female Mice in the 3-Month Inhalation Study of Divinylbenzene-HP^a | | Chamber Control | 25 ppm | 50 ppm | 100 ppm | |--|-----------------|---------------|------------------|---------------| | n | 10 | 10 | 10 | 10 | | Necropys body wt (g) | 31.1 ± 0.8 | 28.5 ± 0.4** | $28.3 \pm 0.4**$ | 28.1 ± 0.3** | | Estrous cycle length (days)
Estrous stages (% of cycle) | 4.45 ± 0.40 | 4.22 ± 0.21 | 4.45 ± 0.09 | 4.70 ± 0.37 | | Diestrus | 29.2 | 28.3 | 30.0 | 32.5 | | Proestrus | 9.2 | 15.0 | 13.3 | 10.8 | | Estrus | 38.3 | 33.3 | 33.3 | 34.2 | | Metestrus | 23.3 | 23.3 | 23.3 | 22.5 | ^{**} Significantly different ($P \le 0.01$) from the chamber control group by Williams' test a Noorgan between the chamber control group by Williams' test Data are presented as mean ± standard error. Differences from the chamber control group are not significant by Dunnett's test (tissue weights) or Dunn's test (spermatid and epididymal spermatozoal measurements). Necropsy body weights and estrous cycle length data are presented as mean ± standard error. Differences from the chamber control group for estrous cycle length are not significant by Dunn's test. By multivariate analysis of variance, exposed females do not differ significantly from the chamber control females in the relative length of time spent in the estrous stages. # APPENDIX I CHEMICAL CHARACTERIZATION AND GENERATION OF CHAMBER CONCENTRATIONS | Procureme | nt and Characterization of Divinylbenzene-HP | I-2 | |-----------|---|------| | Vapor Gen | eration and Exposure of System | I-3 | | Vapor Con | centration Monitoring | I-4 | | Chamber A | Atmosphere Characterization | I-4 | | TABLE I1 | Gas Chromatography Systems Used in the Inhalation Studies of Divinylbenzene-HP | I-6 | | Figure I1 | Infrared Absorption Spectrum of Divinylbenzene-HP | I-7 | | Figure I2 | Proton Nuclear Magnetic Resonance Spectrum of Divinylbenzene-HP | I-8 | | Figure I3 | Gas Chromatogram/Mass Spectra of Divinylbenzene-HP | I-9 | | Figure I4 | Schematic of the Vapor Generation and Delivery System in the Inhalation Studies | | | | of Divinylbenzene-HP | I-10 | | TABLE I2 | Summary of Chamber Concentrations in the 2-Week Inhalation Studies | | | | of Divinylbenzene-HP | I-11 | | TABLE I3 | Summary of Chamber Concentrations in the 3-Month Inhalation Studies | | | | of Divinylbenzene-HP | I-11 | | Table I4 | Summary of Chamber Concentrations in the 2-Year Inhalation Studies | | | | of Divinylbenzene-HP | I-12 | ### CHEMICAL CHARACTERIZATION AND GENERATION OF CHAMBER CONCENTRATIONS ### PROCUREMENT AND CHARACTERIZATION OF DIVINYLBENZENE-HP Divinylbenzene-HP (80% divinylbenzene with 20% ethylvinylbenzene) was obtained from Dow Chemical Company (Midland, MI) in two lots (LJ31012V18 and ND13012V23). Lot LJ31012V18 was used in the 2-week and 3-month studies, and lot ND13012V23 was used during the 2-year studies. Identity and purity analyses were conducted by the analytical chemistry laboratory, Research Triangle Institute (Research Triangle Park, NC); Chemir/Polytech Laboratories, Inc. (Maryland Heights, MO); and the study laboratory, Battelle Northwest Operations (Richland, WA). Reports on analyses performed in support of the divinylbenzene-HP studies are on file at the National Institute of Environmental Health Sciences. Lots LJ31012V18 and ND13012V23, pale, straw-colored liquids with a hydrocarbon odor, were identified as divinylbenzene-HP by the analytical chemistry laboratory using infrared (IR) and proton nuclear magnetic resonance (NMR) spectroscopy and gas chromatography/mass spectrometry (GC/MS) by systems A and B, respectively; by Chemir/Polytech Laboratories, Inc., using IR spectroscopy; and by the study laboratory using GC/MS by systems C and D, respectively (Table II). The IR (Aldrich, 1997; FSCT, 1991), proton NMR (RTI, 1999), and GC/MS (NIST, 1994, 1995a,b) spectra were consistent with reference and literature spectra of divinylbenzene-HP. The IR, proton NMR, and mass spectra are presented in Figures I1, I2, and I3, respectively. The purity of lot LJ31012V18 was determined by the analytical chemistry laboratory using GC with flame ionization detection (FID) by system E and by the study laboratory using GC/FID by system F. The purity of lot ND13012V23 was determined by the analytical chemistry laboratory using GC/FID by system G and by the study laboratory using GC/FID by systems H and I. For both lots, elemental analyses and moisture analyses by Karl Fischer titration were performed by Chemir/Polytech Laboratories, Inc., and concentrations of 4-*tert*-butylcatechol added as a polymerization inhibitor were measured by the analytical chemistry laboratory and the study laboratory using GC, high-performance liquid chromatography (HPLC), or ultraviolet/visible (UV/Vis) spectroscopy. Polymer concentrations were measured in both lots by the study laboratory using a UV/Vis turbidity assay. For lot LJ31012V18, elemental analyses for carbon and hydrogen were in agreement with the theoretical values for divinylbenzene-HP (80% divinylbenzene with 20% ethylvinylbenzene). Karl Fischer titration indicated a moisture content of 87 ± 5 ppm. Polymer content and
4-tert-butylcatechol concentrations were well within the specifications of < 20 ppm and > 600 ppm, respectively. GC/FID by system E and GC/MS by system A detected four major peaks that were identified as the meta- and para-isomers of divinylbenzene and ethylvinylbenzene; the percent total area of the divinylbenzene isomers was 79.3%. GC/FID by system F and GC/MS by system C detected four major peaks and two minor impurity peaks; the minor peaks had areas of approximately 0.1% of the total peak area. The percent total area of the divinylbenzene isomers was 80.2%. Measured as the sum of the meta- and para-isomers of divinylbenzene, the overall purity of lot LJ31012V18 was determined to be approximately 80%. For lot ND13012V23, elemental analyses for carbon, hydrogen, nitrogen, and sulfur were in agreement with the theoretical values for divinylbenzene-HP. Karl Fischer titration indicated a moisture content of approximately 200 ppm. Polymer content and 4-*tert*-butylcatechol concentrations were well within the specifications of < 20 ppm and > 600 ppm, respectively. GC/FID by system G and GC/MS by system B detected four major peaks that were identified as the *meta*- and *para*-isomers of divinylbenzene and ethylvinylbenzene; the percent total area of the divinylbenzene isomers was 81.2%. GC/FID by system H indicated a purity exceeding 99.9% relative to a reference standard. GC/FID by system I and GC/MS by system D detected four major peaks and one minor impurity peak having an area percent of 0.13%; the retention time of this minor peak matched that of naphthalene. The percent total area of the divinylbenzene isomers was 81%. Measured as the sum of the *meta*- and *para*-isomers of divinylbenzene, the overall purity of lot ND13012V23 was determined to be approximately 81%. To ensure stability, the bulk chemical was stored in its original shipping containers, 5-gallon metal pails, at approximately –20° C. Periodic reanalyses of area percent purity and purity relative to a reference standard stored at –70° C were conducted by the study laboratory during the 3-month and 2-year studies with GC/FID by systems F and I. Periodic reanalyses of polymer and 4-*tert*-butylcatechol content were conducted by the study laboratory using a GC/FID system similar to system L and HPLC analysis during the 3-month and 2-year studies, respectively. The HPLC analysis used a Waters Nova-Pak® C18 column (300 mm × 3.9 mm, 4 µm particle size; Waters Corp., Milford, MA) and a mobile phase of 1% acetic acid in methanol (A) and 1% acetic acid in water (B). The mobile phase gradient was 0% A: 100% B for 2 minutes, changed to 100% A: 0% B over the next 11 minutes, held for 4 minutes, and then rapidly reversed to 0% A: 100% B in 0.1 minutes. The flow rate was 0.75 mL/minute, and detection was at 270 and 309 nm. No degradation of the bulk chemical was detected, and polymer and 4-*tert*-butylcatechol concentrations remained within the specifications of < 20 ppm and > 600 ppm, respectively. ### VAPOR GENERATION AND EXPOSURE SYSTEM A diagram of the vapor generation and delivery system used in the studies is shown in Figure I4. Preheated divinylbenzene-HP was pumped onto glass beads in a heated glass column where it was vaporized. Heated air flowed through the column and carried the vapor out of the generator. Generator output was controlled by the delivery rate of the chemical metering pump. Because the vapor leaving the generator was above room temperature, it was transported to the exposure room at an elevated temperature to prevent condensation. In the exposure room, the vapor was mixed with additional heated air before entering a short vapor distribution manifold. Concentration in the manifold was determined by the chemical pump rate, generator air flow rate, and dilution air flow rate. The exposure operator monitored all three components. The pressure in the distribution manifold was kept fixed to ensure constant flows through the manifold and into the chambers. An electronically actuated metering valve controlled the flow to each chamber; a pneumatically operated chamber exposure shutoff valve in line with the metering valve stopped flow to the chamber. In addition, for the chambers used for the two lowest exposure concentrations in each study, a compressed air vacuum pump was attached to the chamber end of the delivery line and used for fine control of the vapor delivery rate. Until the generation system was stable and exposures were ready to proceed, all chamber exposure valves were closed and vapor was directed to the exposure chamber exhaust. When the exposure started, the chamber exposure valves were opened to allow the vapor to flow through the metering valves and then through temperature-controlled delivery lines to each exposure chamber. The vapor was then injected into the chamber inlet duct where it was further diluted with conditioned chamber air to achieve the desired exposure concentration. The study laboratory designed the inhalation exposure chamber (H-2000; Harford Systems Division of Lab Products, Inc., Aberdeen, MD) so that uniform vapor concentrations could be maintained throughout the chamber with the catch pans in place. The total active mixing volume of each chamber was 1.7 m³. A condensation particle counter (Model 3022A, TSI, Inc., St. Paul, MN) was used to count the particles in the rooms (2-week and 3-month studies) and all exposure chambers (all studies) before the start of generation and during generation to determine whether divinylbenzene-HP vapor, and not aerosol, was produced. Low levels of particulate material above that typically observed as background in control and treated chambers were detected in exposure chambers during the 3-month studies. However, there was no consistent difference between measurements made before and during exposure and no trend toward increased particulate levels with increased concentration except for the 400 ppm chamber in the 13-week study, which showed slightly higher particulate levels compared to other chambers. In the 3-month studies, there was no airflow in the heated delivery lines between exposures. During the 2-year studies, a continuous flow of compressed air through the heated delivery lines was continued between exposures as well as during the exposures to purge the system of any divinylbenzene that might subsequently form aerosols or polymerize. Measurements before and during 2-year study exposure periods did not show any significant particulate levels above background, even in the 400 ppm chambers. ### VAPOR CONCENTRATION MONITORING Summaries of the chamber vapor concentrations are given in Tables I2 through I4. Concentrations of divinylbenzene-HP in the exposure chambers were monitored by an on-line gas chromatograph equipped with FID using system J (2-week and 3-month studies) or system K (2-year studies). Samples were drawn from each exposure chamber approximately every 36 minutes using Hastelloy-C gas-sampling and stream-select valves (Valco Instruments Co., Houston, TX) in a separate, heated valve oven. The sample lines were made from 1/16-inch Teflon® tubing and were connected to the exposure chamber relative humidity sampling lines at a location close to the gas chromatograph. The on-line gas chromatograph was checked throughout the day for instrument drift by analyzing an on-line standard of 1,4-diethylbenzene in nitrogen supplied by a diffusion tube standard generator (Kin-Tek, Model 491, Precision Calibration Systems, La Marque, TX). The on-line gas chromatograph was calibrated during routine exposure periods by a comparison of chamber concentration data to data from grab samples that were collected with charcoal sampling tubes (ORBOTM-101, Supelco, Bellefonte, PA), extracted with toluene containing 1-phenylhexane as an internal standard, and analyzed by an off-line gas chromatograph using system L with FID. The volumes of gas were sampled at a constant flow rate ensured by a calibrated critical orifice. The off-line gas chromatograph was calibrated with gravimetrically prepared standards of divinylbenzene-HP and the internal standard (1-phenylhexane) in toluene. ### CHAMBER ATMOSPHERE CHARACTERIZATION Buildup and decay rates for chamber vapor concentrations were determined with animals present in the chambers. At a chamber airflow rate of 15 air changes per hour, the theoretical value for the time to achieve 90% of the target concentration after the beginning of vapor generation (T_{90}) and the time for the chamber concentration to decay to 10% of the target concentration after vapor generation was terminated (T_{10}) was approximately 12.5 minutes. For rats and mice in 2-week studies, T_{90} values ranged from 11 to 15 minutes; T_{10} values ranged from 12 to 16 minutes. For rats in the 3-month studies, T_{90} values ranged from 12 to 14 minutes; T_{10} values ranged from 15 to 16 minutes. For mice in the 3-month studies, T_{90} values ranged from 11 to 14 minutes; T_{10} values ranged from 10 to 16 minutes. For rats in the 2-year studies, T_{90} values ranged from 14 to 16 minutes; T_{10} values ranged from 23 to 27 minutes. For mice in the 2-year studies, T_{90} values ranged from 12 to 14 minutes; T_{10} values ranged from 16 to 26 minutes. A T_{90} value of 12 minutes was selected for all studies. Chamber concentration uniformity was evaluated before the 2-year study without animals and during all studies. It was also measured once during the 2-week studies, once during the 3-month studies, and approximately every 3 months during the 2-year studies. The vapor concentration was measured using the on-line gas chromatograph with FID (analysis by system J for the 2-week and 3-week studies and by system K for the 2-year studies) with the automatic 12-port sample valve disabled to allow continuous monitoring from a single input line. Samples were collected from twelve positions in each chamber. Chamber concentration uniformity
was maintained throughout the studies. The persistence of divinylbenzene-HP in the chambers with animals present after vapor delivery ended was determined by monitoring the concentration after shutoff of test article to the 400 ppm chambers (2-week rat and mouse studies and 3-month and 2-year rat studies) and 100 ppm chambers (2-year mouse study). In the 2-week studies, the concentration decreased to 1% of the target concentration within 164 minutes. In the 3-month study, the concentration decreased to 1% of the target concentration within 144 minutes. In the 2-year studies, the concentration decreased to 1% of the target concentration within 202 (rats) or 403 (mice) minutes. Stability studies of the divinylbenzene-HP in the generation and delivery system were performed. Samples of the test atmosphere from the distribution manifold and the low and high exposure concentration chambers (25 and 400 ppm in the 2-week studies, 12.5 and 400 ppm in the 3-month studies, and 100 and 400 ppm (rats) and 10 and 100 ppm (mice) in the 2-year studies) were collected with ORBOTM-101 charcoal sampling tubes during the first and last hours of generation with animals present in the chambers. The samples were extracted with methylene chloride and analyzed with GC/FID by system F or a similar system. Resolved peaks corresponded to those identified in a divinylbenzene-HP reference chemical and the initial bulk purity assays. No evidence of degradation was detected, and no impurities were detected that were not present in the bulk material. The stability of divinylbenzene-HP in the generator reservoir was monitored during the 2-week studies and during prestart testing for the 2-year studies. Generator reservoir samples were collected twice during each of these studies and were analyzed with GC/FID by system F or a similar system. No evidence of degradation of the test chemical in the generator reservoir was found. The results indicated that divinylbenzene-HP would remain stable for the period of time the test chemical would be stored in the generator reservoir. All measurements of polymer and 4-tert-butylcatechol concentrations in exposure chamber and generator reservoir samples were within the required specifications of < 20 ppm and > 600 ppm, respectively. TABLE I1 Gas Chromatography Systems Used in the Inhalation Studies of Divinylbenzene-HP^a | Detection
System | Column | Carrier Gas | Oven Temperature
Program | |----------------------------|---|--------------------------|--| | System A Mass spectrometry | DB-5MS, 28.7 m × 0.25 mm, 0.25-μm film (J&W Scientific, Folsom, CA) | Helium at 1.2 mL/minute | 75° C for 15 minutes,
then 20° C/minute to 300° C,
held for 5 minutes | | System B Mass spectrometry | DB-5MS, 30 m × 0.25 mm,
0.25-µm film (J&W Scientific) | Helium at 1.0 mL/minute | 75° C for 15 minutes,
then 10° C/minute to 250° C, | | System C | | | held for 7.5 minutes | | Mass spectrometry | Rtx-5, 30 m × 0.25 mm,
0.5-µm film (Restek)
Bellefonte, PA) | Helium at 3 psi | 35° C for 2 minutes,
then 2° C/minute to 100° C,
held for 1 minute,
then 50° C/minute to 200° C,
held for 1 minute | | System D | | | | | Mass spectrometry | DB-5, 30 m \times 0.25 mm, 0.25- μ m film (J&W Scientific) | Helium at 10 psi | 35° C for 1 minute,
then 8° C/minute to 180° C,
held for 1 minute | | System E Flame ionization | DB-5MS, 30 m × 0.32 mm, 0.5-µm film (J&W Scientific) | Helium at 1.1 mL/minute | 100° C for 15 minutes,
then 20° C/minute to 300° C,
held for 5 minutes | | System F | | | note for a minutes | | Flame ionization | Rtx-5, 30 m × 0.25 mm,
1.0-μm film (Restek) | Helium at 24 psi | 35° C for 1 minute,
then 2° C/minute to 120° C,
held for 2 minutes,
then 10° C/minute to 225° C | | System G | | | | | Flame ionization | DB-5, 30 m \times 0.25 mm, 0.25- μ m film (J&W Scientific) | Helium at 1.0 mL/minute | 75° C for 15 minutes,
then 10° C/minute to 250° C,
held for 7.5 minutes | | System H | | | | | Flame ionization | Rtx-5, 30 m × 0.25 mm,
1.0-μm film (Restek) | Helium at 24 psi | 40° C for 3 minute,
then 8° C/minute to 180° C ,
held for 1 minute | | System I | | | | | Flame ionization | Rtx-5, 30 m × 0.25 mm,
1.0- μ m film (Restek) | Helium at 24 psi | 35° C for 1 minute,
then 3° C/minute to 120°C,
then 10° C/minute to 225°C,
held for 1 minute | | System J | | | | | Flame ionization | DB-5, 30 m \times 0.53 mm,
1.5- μ m film (J&W Scientific) | Nitrogen at 25 mL/minute | 140° C
isocratic | | System K Flame ionization | DB-5, 15 m × 0.53 mm,
0.5-µm film (J&W Scientific) | Nitrogen at 8 psi | 110° C f
isocratic | | System L | | | | | Flame ionization | DB-5, 30 m × 0.53 mm,
1.5-μm film (J&W Scientific) | Helium at 6 psi | 90° C for 1 minute,
then 16° C/minute to 210° C,
then 25° C/minute to 280° C,
held for 1 minute | $^{^{\}rm a}$ $\,$ All gas chromatographs were manufactured by Hewlett-Packard (Palo Alto, CA). FIGURE I1 Infrared Absorption Spectrum of Divinylbenzene-HP FIGURE I2 Proton Nuclear Magnetic Resonance Spectrum of Divinylbenzene-HP FIGURE I3 Gas Chromatogram/Mass Spectra of Divinylbenzene-HP FIGURE I4 Schematic of the Vapor Generation and Delivery System in the Inhalation Studies of Divinylbenzene-HP TABLE I2 Summary of Chamber Concentrations in the 2-Week Inhalation Studies of Divinylbenzene-HP | | Target Concentration (ppm) | Total Number of Readings | Average Concentration ^a (ppm) | |---------------|----------------------------|--------------------------|--| | Rat Chambers | | | | | | 25 | 94 | 25.0 ± 0.9 | | | 50 | 101 | 51.2 ± 1.8 | | | 100 | 96 | 99.3 ± 3.6 | | | 200 | 98 | 205 ± 8.7 | | | 400 | 106 | 400 ± 12 | | Mouse Chamber | s | | | | | 25 | 102 | 25.0 ± 0.9 | | | 50 | 110 | 51.1 ± 1.8 | | | 100 | 105 | 99.1 ± 3.5 | | | 200 | 107 | 206 ± 8.5 | | | 400 | 9 | 390 ± 20 | | | | | | ^a Mean \pm standard deviation TABLE I3 Summary of Chamber Concentrations in the 3-Month Inhalation Studies of Divinylbenzene-HP | | Target Concentration (ppm) | Total Number of Readings | Average Concentration ^a (ppm) | |----------------|----------------------------|---------------------------------|--| | Rat Chambers | | | | | | 25 | 607 | 25.1 ± 1.4 | | | 50 | 581 | 50.5 ± 2.5 | | | 100 | 571 | 99.5 ± 4.3 | | | 200 | 576 | 204 ± 5.8 | | | 400 | 578 | 405 ± 11 | | Mouse Chambers | S | | | | | 12.5 | 628 | 12.5 ± 0.6 | | | 25 | 627 | 25.0 ± 1.4 | | | 50 | 600 | 50.4 ± 2.5 | | | 100 | 589 | 99.6 ± 4.3 | | | 200 | 594 | 204 ± 5.8 | ^a Mean \pm standard deviation TABLE I4 Summary of Chamber Concentrations in the 2-Year Inhalation Studies of Divinylbenzene-HP | | Target Concentration (ppm) | Total Number of Readings | Average Concentration ^a (ppm) | | |--------------|----------------------------|---------------------------------|--|--| | Rat Chambers | | | | | | | 100 | 4,416 | 100 ± 4 | | | | 200 | 4,428 | 200 ± 7 | | | | 400 | 4,463 | 403 ± 15 | | | Mouse Chambe | ers | | | | | | 10 | 4,528 | 10.0 ± 0.4 | | | | 30 | 4,733 | 30.1 ± 1.4 | | | | 100 | 4,856 | 99.9 ± 4.7 | | $^{^{}a}$ Mean \pm standard deviation # APPENDIX J INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NTP-2000 RAT AND MOUSE RATION | TABLE J1 | Ingredients of NTP-2000 Rat and Mouse Ration | J-2 | |----------|--|------------| | TABLE J2 | Vitamins and Minerals in NTP-2000 Rat and Mouse Ration | J-2 | | TABLE J3 | Nutrient Composition of NTP-2000 Rat and Mouse Ration | J-3 | | TABLE J4 | Contaminant Levels in NTP-2000 Rat and Mouse Ration | J-4 | TABLE J1 Ingredients of NTP-2000 Rat and Mouse Ration | Ingredients | Percent by Weight | |--|-------------------| | Ground hard winter wheat | 22.26 | | Ground #2 yellow shelled corn | 22.18 | | Wheat middlings | 15.0 | | Oat hulls | 8.5 | | Alfalfa meal (dehydrated, 17% protein) | 7.5 | | Purified cellulose | 5.5 | | Soybean meal (49% protein) | 5.0 | | Fish meal (60% protein) | 4.0 | | Corn oil (without preservatives) | 3.0 | | Soy oil (without preservatives) | 3.0 | | Dried brewer's yeast | 1.0 | | Calcium carbonate (USP) | 0.9 | | Vitamin premix, ^a | 0.5 | | Mineral premix b | 0.5 | | Calcium phosphate, dibasic (USP) | 0.4 | | Sodium chloride | 0.3 | | Choline chloride (70% choline) | 0.26 | | Methionine | 0.2 | a Wheat middlings as carrierCalcium carbonate as carrier TABLE J2 Vitamins and Minerals in NTP-2000 Rat and Mouse Ration^a | | Amount | Source | |--------------------|----------|---| | Vitamins | | | | A | 4,000 IU | Stabilized vitamin A palmitate or acetate | | D | 1,000 IU | D-activated animal sterol | | K | 1.0 mg | Menadione sodium bisulfite complex | | | 100 IU | • | | Niacin | 23 mg | | | Folic acid | 1.1 mg | | | d-Pantothenic acid | 10 mg | d-Calcium pantothenate | | Riboflavin | 3.3 mg | • | | Thiamine | 4 mg | Thiamine mononitrate | | B ₁₂ | 52 μg | | | Pyridoxine | 6.3 mg | Pyridoxine hydrochloride | | Biotin | 0.2 mg | <i>d</i> -Biotin | | Minerals | | | | Magnesium | 514 mg | Magnesium oxide | | Iron | 35 mg | Iron sulfate | | Zinc | 12 mg | Zinc oxide | | Manganese | 10 mg | Manganese oxide | | Copper | 2.0 mg | Copper sulfate | | Iodine | 0.2 mg | Calcium iodate | | Chromium | 0.2 mg | Chromium acetate | a Per kg of finished product TABLE J3 Nutrient Composition of NTP-2000 Rat and Mouse Ration | | Mean ± Standard | _ | | |---------------------------------------|----------------------------------
---------------|-------------------| | Nutrient | Deviation | Range | Number of Samples | | Protein (% by weight) | 13.9 ± 0.57 | 13.1 – 15.5 | 25 | | Crude fat (% by weight) | 8.1 ± 0.24 | 7.6 - 8.5 | 25 | | Crude fiber (% by weight) | 9.1 ± 0.57 | 8.0 - 10.5 | 25 | | Ash (% by weight) | 5.1 ± 0.24 | 4.7 - 5.7 | 25 | | Amino Acids (% of total diet) | | | | | Arginine | 0.748 ± 0.053 | 0.670 - 0.850 | 12 | | Cystine | 0.223 ± 0.027 | 0.150 - 0.250 | 12 | | Glycine | 0.702 ± 0.043 | 0.620 - 0.750 | 12 | | Histidine | 0.343 ± 0.023 | 0.310 - 0.390 | 12 | | soleucine | 0.534 ± 0.041 | 0.430 - 0.590 | 12 | | Leucine | 1.078 ± 0.059 | 0.960 - 1.140 | 12 | | Lysine | 0.729 ± 0.065 | 0.620 - 0.830 | 12 | | Methionine | 0.396 ± 0.053 | 0.260 - 0.460 | 12 | | Phenylalanine | 0.611 ± 0.038 | 0.540 - 0.660 | 12 | | Γhreonine | 0.492 ± 0.045 | 0.430 - 0.590 | 12 | | Гryptophan | 0.129 ± 0.016 | 0.110 - 0.160 | 12 | | Tyrosine | 0.378 ± 0.054 | 0.280 - 0.460 | 12 | | Valine | 0.658 ± 0.049 | 0.550 - 0.710 | 12 | | Essential Fatty Acids (% of total die | et) | | | | Linoleic | 3.89 ± 0.278 | 3.49 - 4.54 | 12 | | Linolenic | 0.30 ± 0.038 | 0.21 - 0.35 | 12 | | Vitamins | | | | | Vitamin A (IU/kg) | $4,943 \pm 829$ | 3,460 - 6,810 | 25 | | Vitamin D (IU/kg) | 1,000 ^a | 3,100 0,010 | 23 | | X-Tocopherol (ppm) | 84.3 ± 17.06 | 52.0 - 110.0 | 12 | | Γhiamine (ppm) ^b | 7.5 ± 0.89 | 6.3 - 9.2 | 25 | | Riboflavin (ppm) | 6.4 ± 2.11 | 4.20 - 11.20 | 12 | | Viacin (ppm) | 78.6 ± 10.86 | 66.4 – 98.2 | 12 | | Pantothenic acid (ppm) | 78.0 ± 10.80 23.1 ± 3.61 | 17.4 - 29.1 | 12 | | | | | 12 | | Pyridoxine (ppm) ^b | 8.88 ± 2.05 | 6.4 - 12.4 | 12 | | Folic acid (ppm) | 1.84 ± 0.56 | 1.26 - 3.27 | | | Biotin (ppm) | 0.337 ± 0.13 | 0.225 - 0.704 | 12 | | Vitamin B ₁₂ (ppb) | 64.8 ± 50.9 | 18.3 - 174.0 | 12 | | Choline (ppm) ^b | $3,094 \pm 292$ | 2,700 - 3,790 | 12 | | Minerals | | | | | Calcium (%) | 1.036 ± 0.042 | 0.964 - 1.140 | 25 | | Phosphorus (%) | 0.592 ± 0.034 | 0.517 - 0.667 | 25 | | Potassium (%) | 0.668 ± 0.023 | 0.627 - 0.694 | 12 | | Chloride (%) | 0.368 ± 0.033 | 0.300 - 0.423 | 12 | | Sodium (%) | 0.189 ± 0.016 | 0.160 - 0.212 | 12 | | Magnesium (%) | 0.200 ± 0.009 | 0.185 - 0.217 | 12 | | Sulfur (%) | 0.176 ± 0.026 | 0.116 - 0.209 | 12 | | ron (ppm) | 177 ± 46.2 | 135 - 311 | 12 | | Manganese (ppm) | 53.4 ± 6.42 | 42.1 - 63.1 | 12 | | Zinc (ppm) | 52.5 ± 6.95 | 43.3 - 66.0 | 12 | | Copper (ppm) | 6.64 ± 1.283 | 5.08 - 9.92 | 12 | | odine (ppm) | 0.535 ± 0.242 | 0.233 - 0.972 | 12 | | Chromium (ppm) | 0.545 ± 0.125 | 0.330 - 0.751 | 12 | | Cobalt (ppm) | 0.23 ± 0.041 | 0.20 - 0.30 | 12 | a From formulation As hydrochloride (thiamine and pyridoxine) or chloride (choline) Table J4 Contaminant Levels in NTP-2000 Rat and Mouse Ration^a | | Mean ± Standard | | | |--|-------------------------------|---------------|------------------| | | Deviation ^b | Range | Number of Sample | | Contaminants | | | | | Arsenic (ppm) | 0.20 ± 0.052 | 0.10 - 0.37 | 25 | | Cadmium (ppm) | 0.04 ± 0.007 | 0.04 - 0.07 | 25 | | Lead (ppm) | 0.10 ± 0.100 | 0.05 - 0.54 | 25 | | Mercury (ppm) | < 0.02 | | 25 | | Selenium (ppm) | 0.20 ± 0.043 | 0.14 - 0.28 | 25 | | Aflatoxins (ppb) | < 5.00 | | 25 | | Nitrate nitrogen (ppm) | 10.8 ± 3.28 | 6.85 - 21.1 | 25 | | Nitrite nitrogen (ppm) ^c | < 0.61 | | 25 | | SHA (nnm) | <1.0 | | 25 | | BHA (ppm) ^d
BHT (ppm) ^d | <1.0 | | 25 | | Aerobic plate count (CFU/g) | 12.0 ± 6 | 10.0 - 40.0 | 25 | | Coliform (MPN/g) | 2.0 ± 0.8 | 0.0 - 3.6 | 25 | | Escherichia coli (MPN/g) | <10 | 0.0 - 3.0 | 25 | | Salmonella (MPN/g) | Negative | | 25
25 | | Fotal nitrosoamines (ppb) ^e e | 4.6 ± 1.22 | 2.3 - 7.8 | 25 | | V Nitro dim otherlamin - (male) | | | | | V-Nitrosodimethylamine (ppb) ^e | 1.9 ± 0.53 2.7 ± 0.95 | 1.0 - 2.9 | 25 | | V-Nitrosopyrrolidine (ppb) | 2.7 ± 0.95 | 1.1 - 5.1 | 25 | | Pesticides (ppm) | .0.01 | | 25 | | х-внс | <0.01 | | 25 | | В-ВНС | <0.02 | | 25 | | /-BHC | < 0.01 | | 25 | | 5-BHC | < 0.01 | | 25 | | Heptachlor | < 0.01 | | 25 | | Aldrin | < 0.01 | | 25 | | Heptachlor epoxide | < 0.01 | | 25 | | DDE | < 0.01 | | 25 | | ODD | < 0.01 | | 25 | | DDT | < 0.01 | | 25 | | HCB | < 0.01 | | 25 | | Mirex | < 0.01 | | 25 | | Methoxychlor | < 0.05 | | 25 | | Dieldrin | < 0.01 | | 25 | | Endrin | < 0.01 | | 25 | | Telodrin | <0.01 | | 25 | | Chlordane | <0.05 | | 25 | | Coxaphene | <0.10 | | 25 | | Estimated PCBs | <0.20 | | 25 | | Ronnel | < 0.01 | | 25 | | Ethion | <0.02 | | 25 | | Crithion | < 0.05 | | 25 | | Diazinon | <0.10 | | 25
25 | | Methyl chlorpyrifos | 0.180 ± 0.103 | 0.047 - 0.499 | 25 | | Methyl parathion | <0.180 ± 0.105
<0.02 | 0.047 - 0.499 | 25
25 | | Ethyl parathion | <0.02 | | 25
25 | | , i | | 0.020 0.557 | | | Malathion | 0.207 ± 0.151 | 0.020 - 0.557 | 25 | | Endosulfan I | <0.01 | | 25 | | Endosulfan II | <0.01 | | 25 | | Endosulfan sulfate | < 0.03 | | 25 | All samples were irradiated. CFU=colony-forming units; MPN=most probable number; BHC=hexachlorocyclohexane or benzene b hexachloride For values less than the limit of detection, the detection limit is given as the mean. Sources of contamination: alfalfa, grains, and fish meal Sources of contamination: soy oil and fish meal All values were corrected for percent recovery. ## APPENDIX K SENTINEL ANIMAL PROGRAM | METHODS | | K-2 | |---------|---|-----| | RESULTS | l | K-4 | #### SENTINEL ANIMAL PROGRAM #### **Methods** Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via serology on sera from extra (sentinel) animals in the study rooms. These animals and the study animals are subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds. Serum samples were collected from five male and five female chamber control rats and mice at the end of the 2-week and 3-month studies. During the 2-year studies, samples were collected from five male and five female sentinel rats and mice at 6, 12, and 18 months and from five male and five female 400 ppm rats and five male and five female 100 ppm mice at the end of the studies. Blood from each animal was collected and allowed to clot, and the serum was separated. The samples were processed appropriately and analyzed at the study laboratory or sent to MA Bioservices, Inc. (Rockville, MD), for determination of antibody titers. The laboratory serology methods and viral agents for which testing was performed are tabulated below; the times at which blood was collected during the studies are also listed. | Method and Test | Time of Analysis | |-----------------|-------------------------| |-----------------|-------------------------| **R**ATS 2-Week Study **ELISA** | H-1 (Toolan's H-1 virus) | Study termination | |---|-------------------| | KRV (Kilham rat virus) | Study termination | | Mycoplasma pulmonis | Study termination | | PVM (pneumonia virus of mice) | Study termination | | RCV/SDA (rat coronavirus/sialodacryoadenitis virus) | Study termination | | Sendai | Study termination | #### 3-Month Study **ELISA** PVM Study termination RCV/SDA Study termination Sendai Study termination Immunofluorescence Assay Parvovirus Study termination #### Method and Test Time of Analysis ### RATS (continued) 2-Year Study #### ELISA M. arthritidisStudy terminationM. pulmonisStudy termination PVM 6, 12, and 18 months, study termination RCV/SDA 6, 12, and 18 months, study termination Sendai 6, 12, and 18 months, study termination 6, 12, and 18 months, study termination #### Immunofluorescence Assay Parvovirus 6, 12, and 18 months, study termination #### **MICE** #### 2-Week Study #### **ELISA** GDVII (mouse encephalomyelitis virus) MVM (minute virus of mice) MHV (mouse hepatitis virus) M. pulmonis PVM Study termination #### 3-Month Study #### **ELISA** Ectromelia virus Study termination EDIM (epizootic diarrhea of infant mice) Study termination Study termination LCM (lymphocytic choriomeningitis virus) Study termination **MVM** Study termination Mouse adenoma virus-FL Study termination Study termination MHV M. pulmonis Study termination **PVM** Study termination Reovirus Study termination Sendai Study termination #### Immunfluorescence Assay Parvovirus Study termination #### **Method and Test** MICE (continued) #### 2-Year Study **ELISA** Ectromelia virus EDIM GDVII LCM Mouse adenoma virus MCMV (mouse cytomegalovirus) MHV M. arthritidis M. pulmonis PVM Reovirus 3 Sendai Immunofluorescence Assay Parvovirus #### RESULTS All test results were negative. #### **Time of Analysis** 6, 12, and 18 months, study termination Study termination 6, 12, and 18 months, study termination Study termination Study termination 6, 12, and 18 months, study termination ## APPENDIX L PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL | INTRODUCTION | ON | L-2 | |--------------|---|------| | MODEL DEV | ELOPMENT | L-2 | | RESULTS | | L-5 | | REFERENCES | 5 | L-6 | | Figure L1 | Physiologically Based Pharmacokinetic Model for Rats Exposed to | | | | [14C]-m-Divinylbenzene by Single-Dose Intravenous Injection or Oral Gavage | L-7 | | TABLE L1 | Physiological Parameters of Rats | | | | for the Physiologically Based Pharmacokinetic Model of m-Divinylbenzene | L-8
 | TABLE L2 | Partition Coefficients for m-Divinylbenzene and m-Divinylbenzene Metabolite | | | | for the Physiologically Based Pharmacokinetic Model of m-Divinylbenzene | L-8 | | TABLE L3 | Parameter Estimates for Rats | | | | from the Physiologically Based Pharmacokinetic Model of m-Divinylbenzene | L-9 | | FIGURE L2 | Excretion of Radiolabel in Urine and Feces of Rats After a Single Intravenous Injection | | | | of 40 mg/kg [14C]-m-Divinylbenzene | L-10 | | Figure L3 | Exhalation of Radiolabel by Rats After a Single Intravenous Injection | | | | of 40 mg/kg [14C]-m-Divinylbenzene | L-11 | | Figure L4 | Excretion of Radiolabel in Bile of Rats After a Single Intravenous Injection | | | | of 40 mg/kg [14C]-m-Divinylbenzene | L-12 | | FIGURE L5 | Tissue Concentrations of m-Divinylbenzene Equivalents in Rats | | | | After a Single Intravenous Injection of 40 mg/kg [14C]-m-Divinylbenzene | L-13 | | Figure L6 | Excretion of Radiolabel in Urine and Feces of Rats After a Single Gavage Dose | | | | of 40 mg/kg [14C]-m-Divinylbenzene | L-14 | | Figure L7 | Tissue Concentrations of m-Divinylbenzene Equivalents in Rats | | | | After a Single Gavage Dose of 40 mg/kg [14C]-m-Divinylbenzene | L-15 | | Figure L8 | Excretion of Radiolabel in Urine and Feces of Rats After a Single Gavage Dose | | | | of 400 mg/kg [14C]-m-Divinylbenzene | L-16 | | Figure L9 | Excretion of Radiolabel in Bile of Rats After a Single Gavage Dose | | | | of 400 mg/kg [14C]-m-Divinylbenzene | L-17 | | FIGURE L10 | Tissue Concentrations of m-Divinylbenzene Equivalents in Rats | | | | After a Single Gavage Dose of 400 mg/kg [14C]-m-Divinylbenzene | L-18 | | FIGURE L11 | Excretion of Radiolabel in Urine and Feces of Rats After a Single Gavage Dose | | | | of 1,200 mg/kg [14C]-m-Divinylbenzene | L-19 | | Figure L12 | Tissue Concentrations of m-Divinylbenzene Equivalents in Rats | | | | After a Single Gavage Dose of 1,200 mg/kg [14C]-m-Divinylbenzene | L-20 | ## PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL #### Introduction A physiologically based pharmacokinetic (PBPK) model was developed to describe the uptake, distribution, and metabolism of meta-divinylbenzene (m-divinylbenzene) in rats. This PBPK model was based on previously published models for styrene (Ramsey and Anderson, 1984; Csanady, et~al., 1994) due to similarity in the chemical structures of styrene (C_8H_8) and m-divinylbenzene ($C_{10}H_{10}$) and the presumed likeness of their metabolic Pathways. The model is specific to male Fischer 344 rats. There were twelve parameters that did not have literature estimates. These parameters were estimated by fitting model predictions to data from NTP toxicokinetic studies (Slauter and Jeffcoat, 1991). #### MODEL DEVELOPMENT The PBPK model (Figure L1) has separate compartments representing adipose, kidney, liver, lung, rapidly perfused and slowly perfused tissues, venous blood, and arterial blood. All of the tissue compartments are modeled as flow limited. There is also a compartment representing the gut. The gut compartment represents the gastrointestinal lumen and is not a compartment with blood flow. There is a submodel for *m*-divinylbenzene as well as a submodel representing the first metabolite of *m*-divinylbenzene. Urinary clearance is modeled as a linear process from the kidney for both *m*-divinylbenzene and the *m*-divinylbenzene metabolite. Oral doses start in the gut compartment. Uptake from the gut to the liver and elimination from the gut to the feces are also modeled as linear processes. Biliary secretion of *m*-divinylbenzene is reported to follow Michaelis-Menten kinetics (Slauter and Jeffcoat, 1991) and enterohepatic recirculation is possible in the model. Biliary secretion, gut uptake, and fecal elimination are included for both *m*-divinylbenzene and *m*-divinylbenzene metabolite. Metabolism of *m*-divinylbenzene takes place in the liver and is assumed to follow Michaelis-Menten kinetics. Metabolism is the only link between the *m*-divinylbenzene and *m*-divinylbenzene metabolite submodels. The maximum rates of metabolism and biliary secretion were scaled to body weight. Rapid venous and arterial equilibration was assumed for the blood. Intravenous dosing was described as an infusion directly into the blood. The model accounts for exhaled test chemical. The physiological parameters for rats shown in Table L1 were taken from the literature (Brown *et al.*, 1997). In order to account for reabsorption of chemical released by exhaled breath, a linear factor, k_{resorp} was incorporated into the model. To calculate the partition coefficients for m-divinylbenzene, we used the relationship: $$\frac{\log K_{ow} \, mDVB}{\log K_{ow} \, (styrene)} = \frac{P_{i, \, mDVB}}{P_{i, \, styrene}}$$ where, K_{ow} represents the octanol:water partition coefficient and $P_{i,mDVB}$ represents the tissue:blood partition coefficient for m-divinylbenzene and tissue compartment i. The online version of the program KowWin (SRC, 2004) was used to estimate the octanol:water partition coefficients of m-divinylbenzene and styrene (Meylan and Howard, 1995). The partition coefficients associated with the m-divinylbenzene metabolite group were taken to be the same as those for the main styrene metabolite, styrene oxide (Table L2). The single-dose toxicokinetic data from the NTP studies used for parameter estimation included tissue concentrations (blood, fat, kidney, liver, and muscle) and amounts eliminated in exhaled breath, urine, and feces (Slauter and Jeffcoat, 1991). In these studies, male Fisher 344 rats were given a single intravenous injection of 40 mg [14 C]-m-divinylbenzene/kg body weight or a single gavage dose of 40, 400, or 1,200 mg/kg. Experimental samples were collected up to 72 hours after dosing. In addition, a bile secretion study was conducted. All data are total radioactivity, and there were no known levels of quantification issues. There were twelve unknown parameters in the model with very little information to suggest the correct order of magnitude for any of them. Therefore, the values of the parameters were first found using a differential evolution optimization algorithm (ICSI, 1995). The advantage of this type of algorithm is that it has the ability to search across the global parameter space without being restricted to a local minimum. The cost function computes the sum of squared errors between the simulated results and experimental measurements for bile, volatile breath, urine, feces, blood, fat, kidney, and liver. Another cost function which computed the natural logarithm of the sum of squared errors was also examined, however, the results obtained from each cost function were similar. The differential evolution algorithm was run for at least 1,000 generations. The best parameters from the differential evolution algorithm were then used as the initial conditions in the constrained optimization routine in MATLAB® (The Math Works, Inc., Natick, MA) to find the final parameter values (Table L3). #### **Definitions of Abbreviations** $A_{i,j}$ = Amount of *m*-divinylbenzene (j = m-divinylbenzene) or *m*-divinylbenzene metabolite(j = m) in compartment i (mg) V_i = Volume of compartment i (L) $C_{i,j}$ = Concentration of chemical j in compartment i (mg/L) Q_i = Blood flow rate in compartment i (L/hour) $P_{i,j}$ = Tissue_i:blood partition coefficient for chemical j (unitless) $Vmax_bile_i = Maximum biliary excretion rate for chemical j (mg/L per hour)$ Km_bile_j = Michaelis-Menten constant associated with bile excretion of chemical j (mg/L) $k_urine_i = Urinary$ elimination rate constant for chemical j (hour $^{-1}$) k_uptake_i = Gastrointestinal lumen absorption rate constant for chemical j (hour $^{-1}$) k_feces_i = Fecal elimination rate constant for chemical j (hour $^{-1}$) Vmax = Maximum metabolism rate (mg/L per hour) Km = Michaelis-Menten constant associated with metabolism (mg/L) met = metabolized uptake = chemical absorption from gastrointestinal lumen to liver #### **Model Equations** Equations for typical flow-limited tissue: $$\frac{dA_{tissue,j}}{dt} = Q_{tissue} * \left(C_{arterial,j} - \frac{C_{tissue,j}}{P_{tissue,j}} \right)$$ $$\frac{dA_{urine,j}}{dt} = k_{urine_{j}} * \frac{A_{kidney,j}}{P_{kidney,j}}$$ $$\frac{dA_{\mathit{kidney},j}}{dt} = Q_{\mathit{kidney}} * \left(C_{\mathit{arterial},j} - \frac{C_{\mathit{kidney},j}}{P_{\mathit{kidney},j}} \right) - \frac{dA_{\mathit{urine},j}}{dt}$$ $$\frac{dA_{bile,j}}{dt} = \frac{Vmax_bile_{j} * \frac{C_{liver,j}}{P_{liver,j}}}{Km_bile_{j} + \frac{C_{liver,j}}{P_{liver,j}}}$$ $$\frac{dA_{uptake,j}}{dt} = k _uptake_j * A_{gut,j}$$ $$\frac{dA_{feces,j}}{dt} = k _ feces_j * A_{gut,j}$$ $$\frac{dA_{gut,j}}{dt} = \frac{dA_{bile,j}}{dt} - \frac{dA_{uptake,j}}{dt} - \frac{dA_{feces,j}}{dt}, where \quad A_{gut,mDVB}(0) = dose_{oral,mDVB}$$ $$\frac{dA_{met,mDVB}}{dt} = \frac{Vmax * \frac{C_{liver,mDVB}}{P_{liver,mDVB}}}{Km + \frac{C_{liver,mDVB}}{P_{liver,mDVB}}}$$ $$\frac{dA_{liver,mDVB}}{dt} = Q_{liver} * \left(C_{arterial,mDVB} - \frac{C_{liver,mDVB}}{P_{liver,mDVB}} \right) - \frac{dA_{met,mDVB}}{dt} - \frac{dA_{bile,mDVB}}{dt} + \frac{dA_{uptake,mDVB}}{dt}$$ $$\frac{dA_{liver,m}}{dt} = Q_{liver} * \left(C_{arterial,m} - \frac{C_{liver,m}}{P_{liver,m}} \right) + \frac{dA_{met,mDVB}}{dt} - \frac{dA_{bile,m}}{dt} + \frac{dA_{uptake,m}}{dt}$$ $$C_{venous,mDVB} = \frac{\left(dose_{IV,mDVB} + \sum Q_i * \frac{C_{i,mDVB}}{P_{i,mDVB}}\right)}{Q_{carding}}$$ $$C_{venous,m} = \frac{\sum Q_i * \frac{C_{i,m}}{P_{i,m}}}{Q_{cardiac}}$$ $$C_{arterial,j} = \frac{Q_{alveolar} * C_{inhaled,j} + Q_{cardiac} * C_{venous,j}}{Q_{cardiac} + \frac{Q_{alveolar,j}}{P_{air,j}}}$$ $$\frac{dA_{exhaled,j}}{dt} = k_{resorp} * Q_{alveolar} * \frac{C_{arterial,j}}{P_{air,j}}$$ $$C_{i,j} = \frac{A_{i,j}}{V_{i,j}}$$ #### RESULTS The results of simulations performed with the PBPK model for *m*-divinylbenzene compared to the experimental data from the NTP toxicokinetic studies are shown
in Figures L2 to L12. Note that the model tracks amounts of *m*-divinylbenzene and *m*-divinylbenzene metabolite separately. The available toxicokinetic data, however, were for dosing radiolabeled *m*-divinylbenzene; all of the data are thus for total radiolabel and there is no differentiation in the experimental data between *m*-divinylbenzene and its metabolites. For each of the four doses used, there is a figure containing five plots illustrating the concentrations of *m*-divinylbenzene equivalents in adipose, venous blood, liver, muscle, and kidney (Figures L5, L7, L10, and L12). All of these tissues, with the exception of muscle, correspond directly with compartments in the PBPK model. For muscle data, the plots are the simulated results from the slowly perfused tissue compartment; muscle is the primary component of the slowly perfused compartment. Oftentimes the model slightly overpredicts the data in this case, which may be explained by the fact that the slowly perfused tissue compartment, while including muscle, is composed of other tissues grouped together as well. #### REFERENCES Brown, R.P., Delp, M.D., Lindstedt, S.L., Rhomberg, L.R., and Beliles, R.P. (1997). Physiological parameter values for physiologically based pharmacokinetic models. *Toxicol. Ind. Health* **13**, 407-484. Csanady, G.A., Mendrala, A.L., Nolan, R.J., and Filser, J.G. (1994). A physiologic pharmacokinetic model for styrene and styrene-7,8-oxide in mouse, rat, and man. *Arch. Toxicol.* **68**, 143-157. International Computer Science Institute (ICSI) (1995). Differentiated Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces. ICSI Technical Report (TR-95-012). International Computer Science Institute, Berkeley, CA. Meylan, W.M., and Howard, P.H. (1995). Atom/fragment contribution method for estimating octanol-water partition coefficients. *J. Pharm. Sci.* **84**, 83-92. Ramsey, J.C., and Anderson, M.E. (1984). A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. *Toxicol. Appl. Pharmacol.* **73**, 159-175. Slauter R.W., and Jeffcoat A.R. (1991). Absorption, distribution, metabolism and elimination of *m*-divinylbenzene (*m*-DVB) in rats after oral and intravenous administration. Research Triangle Institute, Project 311U-3662, Report No. 08. Study performed under NIEHS contract no. N01-ES-65137. Syracuse Research Corporation (SRC) (2004). Interactive LogK_{ow}(KowWin) Demo (http://www.syrres.com/esc/est_kowdemo.htm). FIGURE L1 Physiologically Based Pharmacokinetic Model for Rats Exposed to [14C]-m-Divinylbenzene by Single-Dose Intravenous Injection or Oral Gavage Table L1 Physiological Parameters of Rats for the Physiologically Based Pharmacokinetic Model of m-Divinylbenzene^a | | Value | | |---|--------|--| | Parameter | | | | Body weight (kg) | 0.2686 | | | Cardiac output (L/hour per kg 0.75 body weight) | 14.1 | | | Alveolar ventilation (L/hour per kg 0.75 body weight) | 22.0 | | | Reabsorption factor (unitless) | 0.3 | | | Tissue Volume as Fraction of Body Weight | | | | Fat | 0.09 | | | Gut | 0.03 | | | Kidney | 0.007 | | | Liver | 0.04 | | | Rapidly perfused tissue | 0.153 | | | Slowly perfused tissue | 0.53 | | | Tissue Blood Flow as Fraction of Cardiac Output | | | | Fat | 0.07 | | | Kidney | 0.141 | | | Liver | 0.183 | | | Rapidly perfused tissue | 0.266 | | | Slowly perfused tissue | 0.34 | | ^a Parameter estimates were derived from Brown et al. (1997). TABLE L2 Partition Coefficients for *m*-Divinylbenzene and *m*-Divinylbenzene Metabolite for the Physiologically Based Pharmacokinetic Model of *m*-Divinylbenzene^a | Tissue | Partition Coefficients for <i>m</i> -Divinylbenzene | Partition Coefficients for <i>m</i> -Divinylbenzene Metabolite | | |--------------------------|---|--|--| | Fat | 53.779 | 6.1 | | | Kidney | 1.499 | 2.6 | | | Liver | 1.552 | 2.6 | | | Rapidly perfused tissues | 1.499 | 2.6 | | | Slowly perfused tissues | 1.131 | 1.5 | | | Air | 144.6 | 10,000. | | ^a All coefficients, except air are expressed as tissue:blood ratios; air is blood:air ratio. Values were calculated from octanol:water partition coefficients obtained from Meylan and Howard (1995) and SRC (2004). TABLE L3 Parameter Estimates for Rats from the Physiologically Based Pharmacokinetic Model of *m*-Divinylbenzene | Parameter | Value | | |---|---------|--| | V _{max} (mg/L per hour) | 26.9403 | | | $K_m \text{ (mg/L)}$ | 1.0736 | | | V_{max} _bile _{mDVB} (mg/L per hour) | 10.5794 | | | K_{m} bile m_{DVB} (mg/L) | 0.6742 | | | $k_urine_{mDVB}^{m}$ (hour $^{-1}$) | 0.0605 | | | k_uptake_{mDVB} (hour $^{-1}$) | 0.0242 | | | k_feces (hour $^{-1}$) | 0.0069 | | | V_{max} _bile _{met} (mg/L per hour) | 0.1094 | | | k_{m} bile _{met} (mg/L) | 0.0084 | | | k_urine_{met} (hour $^{-1}$) | 31.3985 | | | k_uptake_{met} (hour $^{-1}$) | 0.0015 | | | k_feces_{met} (hour $^{-1}$) | 0.0320 | | FIGURE L2 Excretion of Radiolabel in Urine and Feces of Rats After a Single Intravenous Injection of 40 mg/kg [14C]-m-Divinylbenzene Lines represent the predicted best-fit curve (from the PBPK model) plotted through the observed data points. Data points are represented as mean \pm 2 standard deviations (n=4). FIGURE L3 Exhalation of Radiolabel by Rats After a Single Intravenous Injection of 40 mg/kg $[^{14}C]$ -m-Divinylbenzene The solid line represents the predicted best-fit curve (from the PBPK model) plotted through the observed data points. Data points are represented as mean \pm 2 standard deviations (n=4). FIGURE L4 Excretion of Radiolabel in Bile of Rats After a Single Intravenous Injection of 40 mg/kg [14C]-m-Divinylbenzene The solid line represents the predicted best-fit curve (from the PBPK model) through the observed data points. FIGURE L5 Tissue Concentrations of *m*-Divinylbenzene Equivalents in Rats After a Single Intravenous Injection of 40 mg/kg [14 C]-*m*-Divinylbenzene The solid line represents the predicted best-fit curve (from the PBPK model) through the observed data points. Data points are represented as mean \pm 2 standard deviations (n=4). FIGURE L6 Excretion of Radiolabel in Urine and Feces of Rats After a Single Gavage Dose of 40 mg/kg [14C]-m-Divinylbenzene Lines represent the predicted best-fit curves (from the PBPK model) plotted through the observed data points. Data points are represented as mean \pm 2 standard deviations (n=4). FIGURE L7 Tissue Concentrations of m-Divinylbenzene Equivalents in Rats After a Single Gavage Dose of 40 mg/kg [14 C]-m-Divinylbenzene The solid lines represent the predicted best-fit curves (from the PBPK model) through the observed data points. Data points are represented as mean ± 2 standard deviations (n=4). FIGURE L8 Excretion of Radiolabel in Urine and Feces of Rats After a Single Gavage Dose of 400 mg/kg [14C]-m-Divinylbenzene Lines represent the predicted best-fit curves (from the PBPK model) plotted through the observed data points. Data points are represented as mean \pm 2 standard deviations (n=4). FIGURE L9 Excretion of Radiolabel in Bile of Rats After a Single Gavage Dose of 400 mg/kg $[^{14}C]$ -m-Divinylbenzene The solid line represents the predicted best-fit curve (from PBPK model) through the observed data points. FIGURE L10 Tissue Concentrations of m-Divinylbenzene Equivalents in Rats After a Single Gavage Dose of 400 mg/kg [14 C]-m-Divinylbenzene The solid lines represent the predicted best-fit curve (from the PBPK model) through the observed data points. Data points are represented as mean \pm 2 standard deviations (n=4). FIGURE L11 Excretion of Radiolabel in Urine and Feces of Rats After a Single Gavage Dose of 1,200 mg/kg [14C]-m-Divinylbenzene Lines represent the predicted best-fit curves (from the PBPK model) plotted through the observed data points. Data points are represented as mean \pm 2 standard deviations (n=4). FIGURE L12 Tissue Concentrations of *m*-Divinylbenzene Equivalents in Rats After a Single Gavage Dose of 1,200 mg/kg [¹⁴C]-*m*-Divinylbenzene The solid lines represent the predicted best-fit curve (from the PBPK model) plotted through the observed data points. Data points are represented as mean ± 2 standard deviations (n=4).